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Abstract

We present the Lorel language, designed for querying semistructured data. Semi-
structured data is becoming more and more prevalent, e.g., in structured documents
such as HTML and when performing simple integration of data from multiple sources.
Traditional data models and query languages are inappropriate, since semistructured
data often is irregular, some data is missing, similar concepts are represented using
different types, heterogeneous sets are present, or object structure is not fully known.
Lorel is a user-friendly language in the SQL/OQL style for querying such data effectively.
For wide applicability, the simple object model underlying Lorel can be viewed as an
extension of ODMG and the language as an extension of OQL.

The main novelties of the Lorel language are: (i) extensive use of coercion to re-
lieve the user from the strict typing of OQL, which is inappropriate for semistructured
data; and (ii) powerful path expressions, which permit a flexible form of declarative
navigational access and are particularly suitable when the details of the structure are
not known to the user. Lorel also includes a declarative update language.

Lorel is implemented as the query language of the Lore prototype database man-
agement system at Stanford (see http://www-db.stanford.edu/lore). In addition
to presenting the Lorel language in full, this paper briefly describes the Lore system
and query processor. We also discuss how Lorel could be implemented on top of a
conventional object-oriented database management system.

1 Introduction

As the amount of data available on-line grows rapidly, we find that more and more of
the data is semistructured. By semistructured, we mean that although the data may have
some structure, the structure is not as rigid, regular, or complete as the structure required
by traditional database management systems. Furthermore, even if the data is fairly well
structured, the structure may evolve rapidly. Traditional relational database management
systems require strict table-oriented data, and they are based on the notion that a schema is
defined in advance and adhered to by all data managed by the system. While object-oriented
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database management systems permit much richer structure than relational systems, they
still require that all data conform to a predefined schema.

Management of semistructured data requires typical database features such as a lan-
guage for forming ad-hoc queries and updates, concurrency control, secondary storage man-
agement, etc. However, because semistructured data cannot conform to a standard database
framework, trying to use a conventional DBMS to manage semistructured data becomes a
difficult or impossible task. At Stanford, the goal of the Lore project (for Lightweight Ob-
ject Repository') is to provide convenient and efficient storage, querying, and updating of
semistructured data. This paper presents Lore’s query language Lorel (for Lore language).
Although we have implemented Lorel in a “home grown” DBMS designed specifically for
semistructured data, the data model underlying Lorel can be defined as an extension to the
ODMG model and the language as an extension to OQL. (See [Cat94] for a specification of
ODMG and OQL.) Thus, Lorel can be implemented on top of a conventional object-oriented
DBMS, yielding a flexible system suitable for managing both structured and semistructured
data.

Semistructured data arises in a number of common situations. Some data sources are de-
signed with non-rigid structures for convenience. A concrete example is the ACeDB genome
database [TMD92], while a somewhat less concrete but certainly well-known example is the
World-Wide Web. The Web imposes no constraints on the internal structure of HTML
pages, although structural primitives such as enumerations may be used. Another frequent
scenario for semistructured data is when data is integrated in a simple fashion from several
heterogeneous sources and there are discrepancies among the various data representations:
some information may be missing in some sources, an attribute may be single-valued in
one source and multi-valued in another, or the same entity may be represented by different
types in different sources.

When querying semistructured data, one cannot expect the user to be fully aware of the
complete structure, especially if the structure evolves dynamically. Thus, it is important
not to require full knowledge of the structure to express meaningful queries. At the same
time, we do want to be able to exploit regular structure during query processing when it
happens to exist and the user happens to know it.

In the remainder of this introductory section we first present some examples of semistruc-
tured data and queries over that data in English and in Lorel. We then further explain the
relationship of Lorel and its underlying data model with OQL and ODMG. We finally
discuss related work and preview the remainder of the paper before delving into the details.

1.1 Examples

We give two example queries to demonstrate the simplicity and power of Lorel on semistruc-
tured data. Details of Lorel are given in later sections of the paper. For these examples,
we assume a Guide database that collects information on local restaurants from a variety
of sources (newspaper reviews, regional guidebooks, personal web pages, etc.). The first
example shows how Lorel handles type coercion, which is important when the underlying

!The Lore system is “lightweight” in two senses: the object model supported by Lore is lightweight,
and the system itself is lightweight in that currently it does not support locking, logging, security, or other
“heavyweight” DBMS features.
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data is untyped, irregularly typed, or may have missing fields. The second example shows
the use of “wildcards” and regular expressions in Lorel, which are important when the
structure of the data is irregular or unknown.

Example 1: Find the addresses of all restaurants in the 92310 zipcode. The Lorel query
directly follows from the FEnglish statement:

select Guide.restaurant.address
where Guide.restaurant.address.zipcode = 92310

It is not necessary to know if the zipcode is represented as an integer or a string value
because Lorel will coerce it accordingly, and if some zipcodes are strings and others are
integers the expected result will still be retrieved. Furthermore, an address that does not
contain a zipcode will not cause an error, but will simply fail the where condition. In most
query languages, such as SQL and OQL, a type error will ensue if the types do not match or
if a field is missing. In addition, in Lorel it is not necessary to worry about the cardinality
(set versus singleton) of components in the path expressions, unlike in OQL. If a restaurant
has several addresses, or several zipcodes for the same address, the expected result still is
returned; i.e., we get any address with any 92310 zipcode.

Example 2: Find the names and zipcodes of all “cheap” restaurants. This time, we do
not assume that the zipcode is a part of the address, but it may instead be a direct subobject
of the restaurant. Also, we do not know if the string “cheap” will be part of a category,
price, description, or other subobject. We are still able to ask the query in Lorel as follows:

select Guide.restaurant.name, Guide.restaurant(.address)?.zipcode
where Guide.restaurant.} grep "cheap"

The “?” after .address means that the address is optional in the path expression. The
wildcard “%” will match any subobject restaurant, and the comparison operator grep will
return true if the string “cheap” appears anywhere in that subobject value. There is no
equivalent query in SQL or OQL, since neither allow regular expressions or wildcards.

1.2 Lorel and OQL

The data model underlying Lorel is called OEM (for Object Fxchange Model). OEM is a
simple and flexible object model, introduced initially in the TSTMMIS project at Stanford
[PGMW95]. Roughly speaking, a database conforming to OEM can be thought of as a
graph with complex values at internal nodes, atomic values at leaf nodes, and labeled edges.?
Although the Lorel language could be presented “from scratch” based on OEM, as we have
done with a previous version of Lorel [QRST95a], for clarity and wider applicability we have
chosen instead to define Lorel formally as an extension to OQL based on an OEM extension
to the ODMG model. For users familiar with OQL, the additional features introduced by
Lorel for handling semistructured data are simple to learn. On the other hand, knowledge of

2Some minor changes to the original model have been introduced to facilitate Lorel, e.g., labels were on
vertices instead of edges in the original model, and we have added distinguished names as entry points into
the database.
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Figure 1: Relationship between Lorel and OQL

OQL is not at all necessary to use Lorel, since the most common Lorel queries are expressed
easily in a compact and intuitive form reminiscent of simple SQL.

To define the semantics of Lorel over an OEM database in terms of OQL and ODMG,
we add to the ODMG model a new type to represent OEM objects. Then, a core part of
the formal Lorel language definition is to extend equality (and other base predicates and
functions) in OQL to handle OEM objects. The extension relies heavily on coercion at a
number of levels to relax the strong typing of OQL. At the same time, Lorel extends OQL
with powerful and flexible path expressions, which allow querying without precise knowledge
of the structure. Path expressions are built from labels and wildcards (place-holders) using
regular expressions, allowing the user to specify rich patterns that are matched to actual
paths in the database graph.

The relationship between Lorel/ OEM and OQL/ODMG is depicted in Figure 1. Lorel
can be translated syntactically to an extension of OQL that includes heterogeneous objects,
described in Section 3, and path variables and wildcards, described in Section 5. (Conse-
quently, many of the convenience features included in Lorel actually are syntactic sugaring
over such an extension of OQL.) The query processor in the Lore system performs exactly
this mapping before accessing an OEM data store; the process is depicted by the solid
arrows in Figure 1, and the Lore system implementation is described in somewhat more
detail in Section 9. We can also encode OEM objects in the ODMG model, in which case
Lorel can be mapped to pure OQL. This process is depicted by the dashed arrows in Figure
1. Section 8 discusses how this approach can be used to implement Lorel on top of an
ODMG-conforming database management system, such as Oz [BDK92].
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1.3 Related work

A first version of Lorel (now dubbed Lorell) was introduced in [QRS195a] and implemented
in the initial version of the Lore system. Lorell was designed and defined from scratch, in-
cluding a full denotational semantics for the language given in [QRST95b]. As mentioned
earlier, we decided to base the new version of Lorel (dubbed Lorel96) on an existing query
language, since this approach provides a well-understood semantics and has wider applica-
bility. The syntax of simple queries is almost identical in Lorell and Lorel96. However, the
syntax for more complex constructs has changed, e.g., for aggregation, path variables, and
construction of complex query results. In addition, because we now define Lorel in terms
of OQL, coercion takes on an importance in Lorel96 that it did not have in Lorell. A de-
tailed comparison of Lorell with more conventional languages such as OQL [Cat94], XSQL
[KKS92], and SQL [MS93] appears in [QRS195a]; most comparisons carry over directly to
Lorel96.

Another OEM-based language called MSL has been designed for mediator specification
in the Stanford TSIMMIS project [PGMU96, PAGM96]. MSL is a rule-based language that
was designed with a different goal than Lorel, namely to specify the integration of data
drawn from multiple sources. We plan to try to characterize the relative expressiveness of
MSIL and Lorel.

A work closely related to ours is a language called Un@QL, also designed for querying
semistructured data. UnQL is based on a model similar to OEM [BDS95]. A primary
feature of UnQL is a powerful construct called traverse that allows restructuring of trees to
arbitrary depth. Such restructuring operations not expressible in Lorel, which was designed
primarily as a simple to use query language.

In [CACS94, CCM96], extensions to OQL are proposed that are somewhat similar in
spirit or goals to Lorel. In [CACS94], a more rigidly typed approach is followed, but because
heterogeneous collections are introduced, the model still has a strong similarity to OEM.
However, the language proposed in [CACS94], called OQL-doc, does not use coercion the
way it is used in Lorel, and the treatment of path expressions is quite different. Optimizing
the evaluation of generalized path expressionsis considered in [CCM96]. Their optimization
is based on two object algebra operators, one dealing with paths at the schema level and
one with paths at the data level. Since we are in a schema-less context, we cannot directly
use their optimization techniques. However, we describe briefly in Section 9 the concept of
a “data guide”, which may serve the role of a schema for an OEM database. We plan to
consider adapting the optimization techniques of [CCM96] to OEM using the data guide.

Also related to our work are several query languages for the World-Wide Web that have
emerged recently, e.g., W3QL [KS95], which focuses on extensibility, WebSQL [MMM96],
which provides a formal semantics and introduces a notion of locality, and WebLog [LL.SS96],
which is based on a Datalog-like syntax. Additional relevant work includes query languages
for hypertext structures, e.g., [MW95, BK94, CM8&89, MW93], and work on integrating
SGML [GR90] documents with relational databases [BCK™94] or object-oriented databases
such as OpenODB [YA94] or O, [CACS94], since SGML documents can be viewed as
semistructured.

In the area of heterogeneous database integration, which as we have suggested is a
common scenario for semistructured data, most work has focused on integrating data in well
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structured databases. In particular, systems such as Pegasus [RAKT92] and UniSQL/M
[Kim94] are designed to integrate data in object-oriented and relational databases. At the
other end of the spectrum, systems such as GAIA [RJR94], Willow [Fre94], and ACL/KIF
[GF'94] provide uniform access to data with minimal structure.

Note that environments such as CORBA [OMG92] and OLF2 [Mic94] operate at a
different level from Lorel. These approaches provide a common protocol for passing messages
between objects in a distributed object environment. In distributed settings, Lorel could
certainly be built on top of and take advantage of environments such as CORBA and OLE2.

We believe that the powerful and user-friendly features of Lorel, together with a clean
semantics inherited from OQL, a declarative update language, and a working prototype
implementation, make Lorel unique among the languages cited above in the context of
managing semistructured data.

1.4 Outline of paper

Section 2 specifies the Object Exchange Model (OEM) and explains how it can be viewed as
an extension to the ODMG model. Sections 3-6 together specify the Lorel query language.
Section 3 discusses the first important novel concept of Lorel, namely its extensive use
of coercion. Sections 4 and 5 introduce the second important concept, path expressions.
Simple path expressions are described in Section 4, while more complex expressions are
introduced in Section 5. Section 6 describes how results of Lorel queries are constructed.
Lorel’s declarative update language is specified in Section 7. Section 8 suggests how Lorel
could be implemented on top of an object-oriented DBMS. Finally, Section 9 briefly covers
the Lore system, describing the overall architecture and features, as well as explaining query
processing in somewhat more detail. Section 9 also covers the status of the implementation,
availability of the system, and plans for future work. Appendix A contains a grammar for
the full Lorel language. Note that not all constructs of Lorel are described in the body of
the paper; rather, the paper focuses on those aspects of Lorel that are novel and designed
specifically for semistructured data.

2 The Object Exchange Model

In this section we present the Object Exchange Model (OEM) [PGMW95], a data model
particularly useful for representing semistructured data. Data represented in OEM can be
thought of as a graph, with objects as the vertices and labels on the edges. We will show
how OEM also can be treated as an extension to the ODMG data model.

In the OEM data model all entities are objects. Each object has a unique object identifier
(oid) from the type oid. Some objects are atomic and contain a value from one of the disjoint
basic atomic types, e.g., integer, real, string, gif, html, audio, java, etc. All other
objects are complex; their value is a set of object references, denoted as a set of (label, oid)
pairs. The labels are taken from the atomic type string.

In Figure 2, we show an example OEM database. Each line shows the label used to
reach an object and the object’s oid. If the object is atomic, its value is also given on that
line. If the object is complex, and has not been described earlier, subsequent indented lines
describe its object references or “subobjects.” For example, the object with oid &77 has
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Guide &12
restaurant &19
category &17 "gourmet"
name &13 "Chef Chu"
address &14
street &44 "El1 Camino Real"
city &15 "Palo Alto"
zipcode &16 92310
nearby_eating_place &35
nearby_eating_place &77
restaurant &35
category &66 "Vietnamese"
name &17 "Saigon"
address &23 "Mountain View"
address &25 "Menlo Park"
nearby_eating_place &19
zipcode &54 '"92310"
price &55 '"cheap"
restaurant &77
category &79 "fast food"
name &80 "McDonald’s"
price &55

Figure 2: Textual representation of objects in an OEM database
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three references: (category, &79), (name, &80), and (price, &55). The object with oid &79
is an atomic object of type string whose value is “fast food”.

We adopt the ODMG feature of distinguished (object) names. There are many facets
to the concept of name:

¢ A name can be viewed as an alias for an object in the database. For instance, Guide
is the name of the object in Figure 2 that contains a collection of restaurants, i.e.,
object &12.

e As seen in the example queries, a name serves as an entry point to the database.
Indeed, the only way objects can be accessed in queries is via paths originating from
names.

e As in the ODMG model, we require that all objects in the database are reachable
from one of the names. (The rationale is that if an object becomes unreachable, no
query will ever manage to access it, so the object might as well be garbage collected.)
Hence, names also serve as roots of persistence: an object is persistent if it is reachable
from one of the names.

OEM can easily model relational data, and, as in the ODMG model, hierarchical and
graph data. (Although the structure in Figure 2 is close to a tree, there is some graph
structure, and even a cycle via objects &19 and &35.) However, we do not insist that
data is as strongly structured as in standard database models, allowing us to model, e.g.,
semistructured information sources, data that originates from the integration of heteroge-
neous sources, and documents that do not conform to a precise schema. Observe in Figure 2
that, for example: (i) restaurants have zero, one, or more addresses; (ii) an address is some-
times a string and sometimes a complex structure; (iii) a zipcode may be a string or an
integer; and (iv) the zipcode occurs in the address for some restaurants and directly un-
der restaurant for others. Lorel is designed to handle incompleteness of data, as well as
structure and type heterogeneity, as exhibited in this example database.

We now give a formal definition of an OEM database, treated as a graph.

Definition: An OFM schema consists of a finite set of names R. An OFM instance of R
consists of: (i) a finite labeled graph (V, U V., E') where V,, and V. are disjoint sets of oid’s
corresponding respectively to atomic and complezx objects, and the edges in E are labeled by
strings; (ii) a name function from R to V, U V,; and (iii) a value function val that maps the
objects in V, to atomic values. The instance must also satisfy the following two conditions:

1. Atomic vertices have no outgoing edges.

2. Fach vertex is reachable from object name(N) for some name N in R. O

We say that an object oy € V, UV, is an [ subobject of object o € V, UV, if there is an edge
in F from oy to oy labeled [.2

Figure 3 provides an example of an OEM database as a graph. It corresponds to the
data given textually in Figure 2.

®Note, however, that the subobject relationship is not one of containment—an object can be a subobject
of many other objects.
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Figure 3: An OEM graph

2.1 Extending the ODMG data model

We now show how we can extend the ODMG data model to represent semistructured data
by “typing” OEM objects as ODMG objects. This approach provides additional intuition
to readers familiar with the ODMG model. It also allows us to use OQIL as a basis for
defining the Lorel language. Finally, it suggests an implementation of Lorel on top of a
traditional object database system, discussed further in Section 8.

The difficulty in typing OEM objects is clearly the heterogeneity of the OEM data. To
deal with the heterogeneity, we think of a complex OEM object as a tuple consisting of
fields ay, ag, ..., a,, where ay ...a, are all labels currently present in the database. (We
could alternatively think of a complex object as a tuple with infinitely many fields, one for
each possible string label. Such objects could still be represented finitely, since at each time
only a finite number of fields is nonempty for each object.)

An important consequence of this encoding is that all complex objects in the database
are of the same type, namely OFM, formally specified below. In particular, all names in an
OEM database are of this type. The value of the a; field for a particular OEM object o is
the (possibly empty) set of a; subobjects of o, i.e., the set of objects referenced from o via
an a;-labeled edge. If o does not reference any objects using an a;-labeled edge, it still has
an a; field but the value of that field is empty.

For example, in the database shown in Figure 2, complex objects are typed by repre-
senting them as tuples with restaurant, category, name, address, nearby, street, city,
and zipcode fields. For the object with oid &12, the restaurant field would contain the
set (&19, &35, &77); all other fields would be empty.

In the type definitions below, we use the symbol “4+” to denote union of types. The
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OFM type is as follows.

type OFEM = OFMcomplex + OFMstring + OEMint + ... + OEMnil
type  OFEMcomplex =
struct(ay : set(OEM), ..., a, : set(OEM))
type  OFMstring = string
type  OFEMint = integer

type  OEMnil = ()

where aq,...,a, is the list of distinct labels occurring in the database. Only integer and
string atomic values are shown explicitly in order to simplify the presentation. There is a
single object in type OFMnil, namely the oemnil object, whose purpose will become clear
in Section 4. The definition above is not quite a valid ODMG type since the ODMG model
does not support union of types. We consider the “coding” of OEM objects as pure ODMG
objects for implementation in an ODMG database in Section 8.

For an object X and a label [, the expression X./ denotes the set of [ subobjects of
X. If X is an atomic object or if [ is not a label occurring in the database (the two cases
where X has no [ field), X.l is the empty set. Observe that X./ always denotes a set of
objects. Having an expression always result in the same type regardless of the structure of
the underlying data is a key idea in extending OQL to handle semistructured data.

3 Coercion

In this and the following three sections we describe in detail the novel aspects of the Lorel
query language, namely coercion and powerful path expressions, and we explain how query
results are constructed. For readability, we present these features primarily in terms of
how they extend the OQL language. Note that since we are focusing only on features
designed specifically for handling semistructured data, many other useful features of the
Lorel language—some inherited from OQL and others not—are not covered; see Appendix
A for a specification of the full Lorel language.

One of the main issues in defining Lorel as an extension to OQL is to coerce comparisons
between objects and/or values to “do the intuitive thing” (rather than return a type error)
when comparing objects and values of different types. In this section we illustrate the
need for coercion by an example, define precisely the coercion we use, and introduce a
new comparison operator that is very useful for semistructured data. We assume here
some rudimentary knowledge of OQIL syntax and semantics, although most queries are
self-explanatory.

Let us consider carefully a query asking for the addresses of all restaurants with zipcode
92310, ignoring for the moment that zipcode could be nested within address. Using pure
OQL syntax (although Lorel permits simpler expression of the same query), the query is:

select X.address
from Guide.restaurant X, X.zipcode Y
where Y = 92310

10
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Strictly speaking, X is an object (e.g., object &35) and Y is a zipcode subobject of X (e.g.,
object &54). So, although the query corresponds to our intuition, in OQL there would be
a type error in equating Y, an object, and 92310, an integer. In Lorel, this query is legal
and returns the desired result.

A guiding principle for Lorel is that a query that makes sense should never result in a
run-time error on any OEM data. Also, to write a query one should not have to know the
precise structure of complex objects, nor should one have to bother with the precise types
of atomic objects. This flexibility is achieved: (i) by extending the base predicates (e.g., =)
and base functions (e.g., +) of OQL to perform extensive coercions (Sections 3.1 and 3.2),
and (ii) by defining a new value-based equality operator (Section 3.3). Readers familiar
with object-oriented languages may think of the extended predicates and functions as calls
to methods attached to the type OEM (see Section 8).

3.1 Comparing values and atomic objects

In general, certain predicates and functions expect arguments of particular atomic types.
Sometimes they accept more than one type; e.g., the comparator < works for integers and
for reals. In the context of semistructured data, we prefer to accept conditions such as
Z = 1.0 and Z > “0.9” as true if Z is an object of value 1 or even of value “1”. In this
section, we consider coercion when comparing atomic objects and values. Coercion used to
compare complex objects or collections of objects is considered in the next section.

We focus first on the basic comparison operators (e.g., =,<,#). When comparing atomic
objects and values, we want to coerce the two operands to values that are comparable
whenever possible. Let us assume that X is an integer OEM object. To compare X to
an integer, say 555, we must first coerce the object X to its value by dereferencing it. To
compare X to a real, we must first dereference X, then coerce its integer value to a real.
The process is guided by the type of the operands. For an integer object X, the comparison
to an arbitrary atomic value Y proceeds as follows.

let X’ be the value of X;
case Y of
integer: compare X’ and Y;
real: compare int-to-real( X') and Y
string: if Y cannot be coerced to real then false
else compare int-to-real( X’) and string-to-real(Y")

If there are additional coercible atomic types they are included in the case statement.

In general, coercion rules should be provided for the basic atomic types and the cor-
responding predicates and functions. They also could be provided for application-specific
atomic types, e.g., coercion of dollars to francs, months to days, gifs to jpegs, etc. Ta-
ble 1 shows (omitting dereferencing) the coercion that takes place for atomic types string,
integer, and real, for the basic comparison operators (=, <,#). Note that the symmetric
cases are omitted. Coercion for the basic comparison operators is not trivial because of the
need to coerce both values to comparable atomic types.* For example, in the comparison

*This particular table was the outcome of a lively Lore meeting at Stanford. An interesting issue (not
addressed in this paper) is the development of access techniques, e.g., indexing [Raj96] or hashing, to support
such comparisons.

11
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arg2 string | real nt
argl
string — string — real | both — real
real - it — real
int —

Table 1: Coercion for basic comparison operators

“4.3” < 5, both the string “4.3” and the integer 5 must be coerced to real in order to
perform the comparison.

Coercion for other (non-arithmetic) comparison operators can be much simpler. For
instance, Lorel also includes the string-based comparators 1ike, grep, and soundex, which
expect operands of a precise atomic type (string). The rule in this case is simply to coerce
both operands to the expected atomic type, if possible.

Not all atomic types are comparable, e.g., we cannot compare gif images and audio
clips. In the case of comparing values of incomparable atomic types, the comparison does
not return an error—it simply returns false. Furthermore, even when the atomic types are
comparable the coercion may fail, e.g., the string “apple” cannot be compared to an integer.
In these cases also the comparison returns false.

Besides comparators such as those mentioned above, we also need to use coercion for
the functions of the language, such as the arithmetic functions (addition, multiplication,
etc.). Coercion for functions is handled similarly.

3.2 Comparing objects and sets of objects

In this section, we consider the use of coercion in comparing atomic objects, complex objects,
and sets of objects. In Lorel, a variable X can be assigned to either an atomic value, an
atomic object, a complex object, or a set of objects. Table 2 presents the coercion rules
for equality. The coercion rules for inequality are similar. Again, the symmetric cases are
not shown.

Note that some of the cases in Table 2 were covered in Section 3.1. For instance,
to compare a value and an atomic object, we first dereference the object. This leads to
comparing two atomic values, which is handled by the coercion rules of Table 1. Let us
consider the new cases.

Object against object. In this case, equality is exactly as in OQL: by oid comparison.
However, users often want to compare objects using value equality. For instance, in query-
ing “what are the restaurants that have a nearby restaurant with the same zipcode,” the
intension in comparing zipcodes is more likely value than object equality over zipcode. We
consider another equality operator, ==, in the next section that forces value equality when
comparing objects. The issue of value versus object equality does not arise for inequal-
ity operators (such as <), since inequality operators are not defined on objects (i.e., the
comparison fails and returns false) but only on values.

12
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arg?2 atomuc set complex
argl value | object of objects | object
value coerce | dereference | existential | false

with =

atomuc object = existential | false
object with =
set set false
of objects equality
complex object =
object

Table 2: Coercion for equality =

Value, atomic object, or set of objects against a complex object. We do not
know which subobject of the complex object should be used in the comparison. Thus, the
comparison fails and returns false.

Set of objects against set of objects. In this case standard set equality is used: for
each element of one set there must be an equal element in the other set.

Value or atomic object against set of objects. This is the most interesting case.
Consider the following example query, again expressed in OQL syntax:

select X.address
from Guide.restaurant X
where X.name = "Chef Chu"

The condition X.name = "Chef Chu" seems to be another example of a type error since
technically X.name is a set (all name subobjects of X). However, the user may believe
that name is a single-valued attribute or may not care whether this is the case or not. In
Lorel, we interpret this where clause as:

where exists Z in X : Z = "Chef Chu"

The comparison of Z to a string now follows the coercion rules of Table 1. This approach
captures the intension of users who expect a single name field, while gracefully handling
restaurants with multiple names. Introducing the existential quantification can be viewed
as a form of coercion from a set to an element. The coercion involved when comparing an
object to a set of objects is similar.

3.3 More on equality

As mentioned earlier, in semistructured environments users are interested primarily in the
values of objects. Thus, value equality is often more appropriate than oid equality in Lorel.
In Lorel we have chosen to retain oid equality for the comparison of objects with objects
since it may sometimes be useful to test whether the same OEM object occurs in two
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arg?2 atomuc set complex
argl value | object of objects object
value coerce | dereference | existential false
with ==
atomuc value = existential false
object with ==
set existential false
of objects with ==
on both sides
complex value =
object

Table 3: Coercion for equality ==

“locations” (i.e., detect the sharing of a subobject). To handle value equality we introduce
a new operator, denoted “==". This operator is not a substantial increase in complexity—a
naive user of Lorel could use only this form of equality, ignore =, and almost certainly get
the desired result.

Let us illustrate the use of == by an example. Consider the following query:

select X.name
from John.name JN, John.child X, X.name XN
where JN == XN

The intended meaning is “retrieve the children of John bearing his name.” We will see
a simpler way of expressing this query below. Note that JN and XN are the names of
John and a child of John, respectively. The operator == expects atomic values on both
sides of JN == X N, so coercion is performed to obtain the object values, which results in
comparing the two strings and not the oid’s. Note that had we used = instead of == in the
query, we would not get the desired answer (assuming names are stored as separate atomic
objects and not shared).
A better way to express the previous query is:

select X.name
from John.child X
where John.name == X.name

This is a case of the comparison of two sets. Since the == predicate expects atomic values,
the sets are coerced into atomic values using existential quantification as follows:

select X.name

from John.child X

where exists JN in John.name :
exists XN in X.name : JN == XN

where JN == X N itself involves coercion to string values.
The coercion rules for operator == are summarized in Table 3.
14
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4 Simple Path Expressions

When querying semistructured data, especially when the exact structure is not known, it is
convenient to use a form of “navigational” querying based on path expressions. The idea is
to specify paths in the OEM graph based on the sequence of labels on edges. In this section,
we describe simple path expressions, which allow one to obtain the set of objects reachable
by following a sequence of labels starting from a named object in the OEM graph. A more
powerful form of path expressions based on wildcards and regular expressions is described
in Section 5.

A simple path expressionis a sequence Z.ly....l,, where ly,...,[, are labels and Z is an
object name or a variable denoting an object. A data path is a sequence og,ly,01,...,1,, 04,
where the o0;’s are objects and, for each ¢, there is an edge labeled [; between 0;,_1 and o,.
Starting from an object Z = og there may be several data paths that “match” the simple
path expression Z.ly....[,. Path expressions are an extremely convenient and user-friendly
feature of Lorel. However, as we will see, simple path expressions are merely a syntactic
convenience. Indeed, we explain the semantics of simple path expressions in this section by
describing how they can be reduced in a query to one or more OQL-style object-component
references.

We first illustrate this reduction with an example. Consider the object named Guide and
the simple path expression Guide.A.B.C'. This path can be interpreted navigationally as:
start from object Guide, follow an A edge, then a B, and finally a C' edge. Since there are
possibly many A, B, and C' labeled edges, the path expression can be matched to a number
of data paths in the OEM graph. Alternatively, we can interpret this path expression using
OQL-style object-component referencing: Guide.A denotes the set of objects R with an A
edge from Guide to R, Guide.A.B denotes the objects Z such that for some R in Guide. A,
there is a B edge from R to Z, and similarly for Guide.A.B.C'. The following concrete
example illustrates the notion. The Lorel query on the left is equivalent to the OQL query
on the right with the path expression reduced.

select Z select Z
from Guide.restaurant.zipcode Z from Guide.restaurant R, R.zipcode Z

The precise reduction of a simple path expression depends upon whether the path expression
appears in the from, select, or where clauses. We consider each case in turn.

4.1 From clause

The case of a path expression appearing in the from clause was illustrated by the previous
example. Indeed, as the example suggests, the general intuition for reducing path expres-
sions in the from clause is to insert a variable after each label. The actual algorithm is
somewhat more complex since Lorel gives a particular semantics to common prefixes of
multiple path expressions.

Consider the following from clause:

from Guide.restaurant.address.zipcode Z,
Guide.restaurant.name N
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In SQL, the name of a relation is used as a variable that ranges over the relation. In
essentially the same spirit, we want to think of Guide.restaurant as a variable that ranges
over the restaurants, so two occurrences of this path expression are then bound to the same
variable. The previous from clause is thus translated to:

from Guide.restaurant R,
R.address A,
A.zipcode Z,
R.name N

The general case follows directly from this example.

4.2 Select clause

We now consider simple path expressions in the select clause. Two cases arise: either the
entire path expression also occurs in the from clause or it does not.

If a path expression in the select clause also occurs in the from clause (possibly as a
prefix of a longer path expression), then after translating the from clause we already have
a variable that denotes the meaning of the path expression. It therefore suffices to replace
the path expression by the corresponding variable. More precisely, the largest prefix of a
path expression in the select clause that also occurs in the from clause is replaced by the
variable introduced in the from clause for that prefix. For example, the query:

select Guide.restaurant
from Guide.restaurant.address.zipcode Z
where Z = 92310

is translated to:

select R

from Guide.restaurant R,
R.address A,
A.zipcode Z

where Z = 92310

Now suppose that path expression p = X.ly....l, in the select clause shares a common
prefix with a path expression in the from clause only up to label [;, 1 < ¢ < n. Then for
each assignment to the variables in the from clause, p returns the set of objects resulting
from the path expression v;.l;41....l,, where v; is the variable assigned in the from clause
to v;,_1.l;, and v;_1 is defined similarly (by recursion). This set can be expressed in OQL by
translating the remainder of p after label ¢ to a nested select clause returning the result
of v;.l;41....1,. For example, the query:

select Guide.restaurant.address.zipcode
from Guide.restaurant

is translated to:

select (select Z from R.address A, A.zipcode Z)
from Guide.restaurant R
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This query returns the set of zipcodes associated with each restaurant. Observe that for a
given restaurant, the zipcodes or even the addresses of the restaurant may be empty sets,
but the query does not return an error.

4.3 Where clause

Finally, we consider path expressions occurring in the where clause, which is the most
challenging case.

As in the select clause, if a path expression in the where clause is a prefix (not neces-
sarily strict) of some path expression in the from clause, we replace the path expression by
the corresponding variable from the from clause. Now suppose the path expression is not
such a prefix, and consider a simple example:

select Guide.restaurant
from Guide.restaurant
where Guide.restaurant.address.zipcode = 92310

This query compares a set of zipcodes to an integer. Thus, by the coercion rules introduced
in Section 3 we get:

select R
from Guide.restaurant R
where exists A in R.address
exists Z in A.zipcode : Z = 92310

The query will return the restaurants that have at least one address with at least one zipcode
matching 92310.

When generalizing this treatment of simple path expressions, a difficulty arises from the
fact that the same simple path expression may occur more than once in the where clause
without occurring in the from clause. Following our general philosophy that identical path
expression prefixes should match the same data paths, we would like to have all occurrences
relate to the same existentially quantified variable. For instance, consider the query:

select Guide.restaurant.name
from Guide.restaurant

where Guide.restaurant.address.zipcode = 92310 or
(Guide.restaurant.address.street = "E1 Camino Real"
and Guide.restaurant.address.city = "Palo Alto'")

that returns the names of all restaurants having an address with a zipcode of 93210, or
that are located on El Camino Real in Palo Alto. One possibility is to place all existential
quantifiers at the beginning of the where clause, as in the following query:

select R
from Guide.restaurant R
where exists A in R.address : exists Z in A.zipcode :
exists S in A.street : exists C in A.city :
(Z = 92310 or (S = "El Camino Real" and C = "Palo Alto"))
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But this solution is not satisfactory for semistructured data, since it would discard a restau-
rant R that has an address with zipcode 92310 in cases where the address has no street. In
the above query, R would not be selected since “exists S in A.street” would fail.?

To overcome this difficulty, the newly introduced variables are also allowed to take the
value oemnil. The presence of this value in any condition makes the condition false: oemnil
= oemnil is false and so is not(oemnil = oemnil). This approach guarantees that existential
quantification will not “block” the evaluation of the condition, nor will it make the condition
true by “mistake” because of the nil objects. Now the (correct) translation of the previous
query is:

select R
from Guide.restaurant R
where exists A in (X.address union set(oemnil))
exists Z in (A.zipcode union set(ocemnil))
exists S in (A.street union set(oemnil))
exists C in (A.city union set(oemnil))
(Z = 92310 or (S = "El Camino Real" and C = "Palo Alto"))

We conclude this section with three final topics: the implementation of simple path
expressions; the sharing of path expressions between the select and where clauses; and
allowing queries without a from clause.

4.4 TImplementing simple path expressions

Although oemnil is needed for the general case, in many cases we can avoid using it. It
usually suffices to “push” each existential quantifier to the innermost point in the where
clause such that it encompasses all occurrences of its corresponding variable. For example,
the query in the previous section can be translated instead to:

select R
from Guide.restaurant R
where exists A in R.address :
( (exists Z in A.zipcode : Z = 92310) or
( (exists S in A.street : S = "E1l Camino Real'") and
(exists C in A.city : C = "Palo Alto") ) )

The existential quantifier for address needs to be placed surrounding all three conditions
involving address, but each of the other existential quantifiers need surround only one
condition. In this case, a restaurant R having an address A with a zipcode Z of 92310
would succeed in the where clause even if A.street or A.city were missing.

Unfortunately, this approach fails in certain unusual cases, as shown by the following
two queries that are not equivalent:

®This problem explains why the notion of partial object assignments was introduced to define the semantics
of Lorell [QRST95a]. The remainder of this subsection essentially shows how to achieve the effect of partial
object assignments in OQL.
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select A.H select A.H

from someroot.somelabel A from someroot.somelabel A
where ( A.B.C = 5 where exists b in A.B : exists d in A.D :
or A.D.E = 6 ) and ( (exists ¢ in b.C : ¢ = 5) or
(ABF=17 (exists e in d.E : e = 6) ) and
or A.D.G = 8 ) ( (exists f in b.F : £ = 7) or

(exists g in d.G : g = 8) )

The absence of a D edge always makes the right one false, whereas the left is true if there
are appropriate A.B.C' and A.B.F paths. Note that adding a union with oemnil for each
exists clause in the righthand query would yield the correct answer. It is possible to use
a simple test to: (i) verify whether an expression is free of the pathological behavior of the
last example; and (ii) if it is, push existential quantification as shown above and avoid the
use of oemnil.

4.5 Select and where clauses

A path expression common to the select and the where clauses will use the same variable
only if this path expression also occurs in the from clause. Consider for instance:

select Guide.restaurant.price
from Guide.restaurant
where Guide.restaurant.price > 25

This query is translated to OQL as follows:

select (select P from R.price P)
from Guide.restaurant R
where exists Q in R.price : Q > 25

A subtlety is that there is no connection between the prices in the select and where clause.
All prices for a restaurant that has at least one price over 25 are retrieved, even those prices
that are less than 25. To keep only those prices above 25, one must write:

select (select P from R.price P where P > 25)
from Guide.restaurant R
where exists Q in R.price : Q > 25

Observe the different roles of the two clauses: the where clause filters restaurants, whereas
the embedded query in the select clause filters prices.

4.6 Omitting the from clause

Queries in Lorel need not have a from clause. If a from clause is not provided in the query,
it is generated from the select clause by introducing a path expression in the from clause
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for each path expression in the select clause.® If the from clause is omitted, the select
clause can only consist of paths originating from database names. For example:

select Guide.restaurant.name
where Guide.restaurant.category = 'gourmet"

becomes

select Guide.restaurant.name
from Guide.restaurant
where Guide.restaurant.category = 'gourmet"

which brings us back to familiar ground. By using simple path expressions and omitting the
from clause, we find that straightforward queries are extremely easy to express in Lorel, and
we shall express them in this manner in the remainder of the paper when it is appropriate
to do so.

5 General Path Expressions

In this section, we extend the notion of simple path expressions to a more powerful syntax for
path expressions, called general path expressions. (Note that our general path expressions
are not the same as the generalized path expressions of [CCM96].) Disregarding the details
of the syntax for the moment, examples of general path expressions are:

Guide.restaurant(.address)?.zipcode
Guide.restaurant.#@P.comp’, .name
Guide.restaurant(.nearby)*{R}.name

The first expression specifies the paths starting from Guide, following a restaurant edge,
then a zipcode, with an optional address in between.

Ignoring the term @P, the second expression specifies paths starting from Guide with a
restaurant edge, followed by an arbitrary number of edges with unspecified labels (symbol
#), followed by an edge having a label beginning with “comp” (comp%), and finally termi-
nating with an edge labeled name. The path variable P is bound by @P to each data path
that matches “#” in this path expression.

Ignoring the term { R}, the last expression specifies all paths going through a restaurant
edge, then an arbitrary number (symbol ) of nearby edges, and finally a name edge. For
each data path matching this path expression, the (object) variable R is bound by {R} to
the object immediately before the name label. Note that { R} is just a useful syntactic way
to attach variables to objects in the middle of long paths.

Using general path expressions we can, e.g., obtain the name of restaurants with zipcode
92310 in the address or directly as a field of the restaurant. Note that in this query we also
employ several of the syntactic conveniences introduced in Section 4.

SWe could also use path expressions in the where clause to generate the from clause, but in practice we
have found that doing so is unnecessary. Note also that instead of generating the from clause only in cases
where it is missing entirely, we could take a more general approach where we add missing components to
the from clause based on path expressions appearing elsewhere in the query. For simplicity, we have decided
against this more general approach.
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select Guide.restaurant.name
where Guide.restaurant(.address)?.zipcode = 92310

We first consider the exact syntax for specifying general path expressions, then we turn to
wildcards. The last two subsections deal with the use of path and object variables within
general path expressions.

It is important to notte that while simple path expressions can always be translated to
OQL, general path expressions cannot.

5.1 Regular expressions for paths

A general path expression (gpe), like a simple path expression, starts with an object name or
a variable. General path expressions extend simple path expressions by allowing the object
name or variable to be followed by one or more gpe_components, rather than just a sequence
of labels as in simple path expressions. The syntax of a gpe_component is given by:

1. If [ is a label, then .l is a gpe_component.
2. If X is an object variable, then .unquote(X) is a gpe_component.

3. If 51 and sy are gpe_components, then the following are also gpe_components:
8189 81|82 (81) (81)? (81) + (81)*

The unquote( X ) function in case 2 takes the value of an object variable X (which must be co-
ercible to a string) and uses it as a label in the path expression. So, for instance, if X contains
the string “restaurant”, then Guide.unquote(X) can be used instead of Guide.restaurant.
In case 3, the symbol | is used for disjunction, ? means 0 or 1 occurrences, + means 1 or
more, and * means 0 or more.

The only difficulty with our use of regular expressions here is that because of the Kleene
closure (), a general path expression may match an infinite number of data paths if the
data is cyclic. Now, if we only care about the objects at the extremities of the paths, there
are a finite number of them. However, if we also care about the paths themselves (e.g.,
because of the path variables considered further on), the infinite number of paths becomes
an issue. In Lorel, we choose to avoid dealing with infinite sets of paths by deciding that
a data path is not allowed to cross the same object twice when matching a gpe_component
terminating with a * or + in a general path expression. This acyclicity condition may appear
artificial but it seems general enough for the applications we have considered so far, and it
is easy to implement using a cycle detection mechanism. An alternative method would be
to compute a finite representation of the infinite set of data paths matching a given path
expression, which is possible because of the regularity of this set [Cou83]. However, this
approach would seriously complicate the implementation.

5.2 Wildcards

The regular expressions specified above already allow some flexibility in querying. However,
when querying semistructured data, one often does not know all of the labels of the objects or
their relative orderings precisely. It is therefore also useful to have a concept of “wildcards.”

21

www.manaraa.com



The first wildcard is “%,” which matches 0 or more characters in a label. One can use
any combination of letters, digits, or % in place of a label (i.e., in .[) in the definition of
a gpe_component. For example, suppose we know that restaurants have a label “zip” or
“zipcode,” and some other label that contains a description pertaining to price. We can
express the query “Find the names of cheap restaurants with zip(code) 92310” as follows:”

select Guide.restaurant.name
where Guide.restaurant.zip} = 92310 and
Guide.restaurant.} = "cheap"

The second wildcard is “#”. The # symbol in a path expression, .#, is shorthand for
the expression “(.%)+”, which is useful since it matches any data path of length 0 or more.
In practice we find that # is used very, very frequently in queries.

5.3 Path variables

Another important feature of general path expressions is the ability to attach variables to
data paths using path variables. The value of a path variable is a data path in the OEM
graph, i.e., a list of objects and labels. As such, the value of a path variable cannot be
output in the query result. However, using path variables one can test data paths for
equality, and a function, namely path-of, turns a data path into a single string containing
the labels in the data path separated by dots.

The path-of function allows one to ask queries to “discover” the structure of the data.
For instance, one could ask:

select distinct path-of (P)
from Guide.#QP.zipcode

(where P is a path variable) to obtain the set of paths in the database that lead to zipcode.
One would obtain:

restaurant
restaurant.address
restaurant.nearby
restaurant.nearby.address

Perhaps the most practical use of path variables is to obtain the names of labels. Suppose
that we want to obtain all labels leading to objects containing the string “cheap.” We use
the query:

select distinct path-of(L)
from Guide.#.%QL X
where X = "cheap"

This query will return label L if there is a path from Guide to some object X with value
“cheap” and final label L. Here, L is a path variable for a path of length one, so it can be

"For even more flexibility, this query could use one of Lorel’s built-in string matching predicates such as
like or grep in place of =.
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thought of as a label variable. Note that “Guide.#@L X” would instead bind L to the entire
path of labels originating from Guide.

One last use of path variables that we will consider is as “path distinguishers,” to force
identical path expressions to match distinct paths in the OEM graph, as in the following

query:

select R

from Guide.restaurant R

where R(.#.nearby)@P = R(.#.nearby)eQ
and P <> Q

This query returns all restaurants R that have two distinct paths to the same nearby
restaurant.

5.4 More on object variables

Except in the sample general path expressions at the beginning of this section, so far object
variables have always appeared at the end of a path expression. We now show how object
variables can be introduced in the middle of a path expression, a simple feature provided
primarily for syntactic convenience. The query:

select N
from Guide.restaurant{R}.name N
where R.category = 'gourmet"

is equivalent to:

select N
from Guide.restaurant R, R.name N
where R.category = 'gourmet"

Using object variables within path expressions is an alternative way of distinguishing
between two path expressions that would otherwise be syntactically identical and thus be
assigned the same variable. For example, the following query finds all restaurants with
addresses in both Palo Alto and Menlo Park:

select N

from Guide.restaurant{R}.name N

where R.address{Al1}.city = "Palo Alto'" and
R.address{A2}.city = "Menlo Park"

Without Al and A2, a single existential variable would be used for address, which would
always result in an empty query result (assuming a single address always has a single city).

In summary, then, a general path expression is a sequence Z.qq....q,, where ¢1,...,q,
are qualified_gpe_components and Z is an object name or a variable denoting an object. A
qualified_gpe_component is an expression of the form:

gpe_component [ QP | [{Y}]
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where P is an optional path variable and Y is an optional object variable. We restrict the
use of path and object variables so that path variables are not allowed to appear in path
expressions in the select clause, and the same path or object variable may not be defined
in more than one path expression in a query.

6 Constructing Results

A select-from-where query in Lorel has the same semantics as a select-from-where
query in SQL or OQL: it results in a bag (multiset), or in a set if the keyword distinct is
used. In Lorel, the result is always a collection of OEM objects, and duplicate elimination
is by oid. For a “top-level” query (i.e., a query that is not a nested subquery), or a query
used at the top level in an assignment (see Section 7), the final collection is packaged into
a single OEM object. We now explain how results are constructed in more detail.

Asin SQL and OQL, for each assignment of the variables in the from clause that passes
the condition of the where clause, a value is generated according to the expressions in the
select clause. Fach of these values is then coerced into an OEM object. The coercion is
explained in detail below. The coercion may result in the creation of new objects and edges
in the OEM graph. Thus, the query result may refer to original database objects as well as
to new objects created by the coercion.

As mentioned above, the result of a top-level query is a single OEM object that is
generated to hold the query result. The default name answer identifies this object, and
edges link it to elements of the answer. For instance, the query:

select X
from Guide.restaurant X

would generate the following answer object:

answer &155
restaurant &19
restaurant &35
restaurant &77

Observe that only &155 is a new object. The result of this query can be reused in later
queries, although renaming is necessary (Section 7.1) so that answer is not overwritten. We
discuss below how the label restaurant is chosen for the edges leading to the elements of the
answer.

Each value in the result of the select clause is coerced to an OEM object according to
the to_oem coercion function specified in Table 4. Let us examine each line in Table 4. Asin
the previous example, the function to_oem does nothing to an OEM object. From an atomic
value, it creates a new OEM object of the appropriate type and value using the function
new-oem. We will return to this function when dealing with updates in Section 7. The
interesting cases are: (3) when each value returned by the select clause is a collection, in
which case the function creates a new complex object that holds the collection with default
labels (discussed below) leading to the subobjects, and (4) when the select clause returns
struct values, in which case the function creates a complex object and uses the attributes of
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‘ Case ‘ Result of Select Expression ‘ Coercion Function

1 OEM object o no coercion needed
2 atomic value v new_oem(type,v)
where type is the type of v
3 | collection V new_oem(complex,struct(default: {tooem(v)|v € V}))
4 struct(ag @ Vi,..., a, : Vy) new_oem(complex,struct(ay : wq,..., a, : w,)) where

w; = { tooem(v) | v € v; } if v; is a collection
w; = { to.oem(v;) } otherwise

Table 4: Function to_oem coerces values to a single OEM object

the struct as labels leading to the subobjects. Because a select clause in Lorel containing
more than one expression is interpreted as an implicit struct construction, case (4) arises
frequently.

Note that the coercion also applies to the result of nested subqueries. For example, if
a query () contains a nested subquery @’ in its select clause, the result of @’ is coerced
to a set of OEM objects before coercing the result of (). Observe also that this coercion
can be extended to transform an arbitrary (portion of an) ODMG database to our Object
Exchange Model. An OEM object is created for each ODMG object, and the values of the
objects are coerced according to the rules in Table 4.

As an example, the following query illustrates the use of multiple expressions in a select
clause. The query returns the names and addresses for each restaurant in Guide.

select X.name, X.address
from Guide.restaurant X

The result of the query on our sample database is:

answer &100
restaurant &101
name &13 "Chef Chu"
address &14 ...
restaurant &102
name &17 "Saigon"
address &23 "Mountain View"
address &25 "Menlo Park"
restaurant &103
name &80 "McDonald’s"

Lorel determines the appropriate label for each element of the result at run-time. There
are three cases: (1) If the object already exists in the database, then the last label on the
data path that was matched by the query (causing the object to be selected by the query)
is chosen. (2) If a new object is based on an existing object, e.g., by projecting some of its
subobjects (as in the new object &101 above), then the label leading to the existing object
is chosen. (3) If neither (1) nor (2) holds, then we use the label “default” for the new object.
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7 Updates

We have now seen the novel features of Lorel for querying semistructured data. This section
introduces Lorel’s declarative update language. Using the update language, it is possible
to create and delete database names (Section 7.1), create a new atomic or complex object
(Section 7.2), modify the value of an existing atomic or complex object (Section 7.3), and
bulk load an OEM database (Section 7.4). As mentioned earlier, deletion occurs implicitly
when an object becomes unreachable, so there is no explicit deletion operation.

7.1 Assigning names to objects

Names are entry points into the database and are created using the name statement:
name <name> := <expression>

Names also may be created while bulk loading the database, as discussed in Section 7.4
below. The expression returns a single object that is assigned to the name. Coercion is
performed to coerce the expression into a single OEM object if necessary, using the function
to_oem specified earlier in Table 4. Expressions may be queries, new object creations, or
the null keyword. If the name does not yet exist, this statement creates a new name called
<name>. If the name already exists then it is reassigned to the returned object.

For example, the following statement creates an entry point to the Saigon restaurant.®

name myFavorite := element( select Guide.Restaurant
where Guide.Restaurant.name = "Saigon" )

The same name may later be reassigned as follows:

name myFavorite := element( select Guide.Restaurant
where Guide.Restaurant.name

"Chef Chu" )
Names are deleted by assigning them to null:
name myFavorite := null

We note again that deletion is by unreachability (garbage collection), so an assignment to
null may result in the deletion of some objects.

7.2 Object creation

For object creation, we use the function new_oem:
new_oem(val-type, value) — object

This function creates a single object with the specified type and value. (Objects also may
be created during bulk loading, of course.) The possible value types for an object are the
atomic types, e.g., integer, real, string, gif, etc., and the complex object type complex.
Complex object values are specified as struct’s, where each field describes a label and a

8Element is an OQL keyword that extracts and returns the single member of a singleton set.
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set of OEM objects for that label. Lorel also includes a second function, load_oem, which is
used for creating “binary large objects” such as gif images and audio. Load_oem is identical
to new_oem, except that the name of a file containing the value is given in place of the value
itself.

Here are two examples of new_oem:

new_oem( int , 5 )
new_oem( complex , struct(a:{new_oem(int,5)}, b:{X,Y}) )

The first example constructs an integer OEM object with value 5. The second example
creates a new complex object, say o, puts an a edge between o and a new object of value 5,
and puts b edges between o and the objects named X and Y.

We allow shorthand notation in the creation of objects when the omitted information is
redundant:

1. When the value type can be deduced from the value it may be omitted. For example,
5 is inferred to be an integer.

2. Values are coerced to objects using the function to_ocem in Table 4 if needed.
3. The struct constructor may be omitted.
Thus, the two examples above may be written more compactly as:

new_oem{ 5 )
new_oem( a:5, b:{X,Y} )

Note in particular that the operator new_oem itself may be omitted and “5” understood as
“new_oem(int, 5)” after coercion.

7.3 Updates to objects

The values of objects may be modified using the update statement. We first consider
updating single named (complex or atomic) objects and then look at updating many objects
simultaneously with one construct.

Suppose that Price is a named atomic (integer) object. Its value may be modified using
the statement:

update Price :=7

This statement changes the value inside the object identified by Price. After the statement,
Price continues to identify the same object. By contrast,

name Price := 7

would create a new object containing the value 7 and then assign Price to it.
Updates also may increment (add to) or decrement (delete from) the value. The following
example adds 1 to the Price value:

update Price += 1
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Similarly, to decrement a value we use -=.

Complex objects also may be modified by changing, adding to, or deleting from the
subobjects with a given label. For instance, the following update indicates that a new
branch of my favorite restaurant has opened in Sunnyvale.

update MyFavorite.address += "Sunnyvale"
The general form of the update statement for complex objects is:
update <object-selector>.<label> (+/-/:)= <expression>

and the semantics for updating complex objects is defined as follows. The <object-selector>
determines an object o to be updated. It is usually a database name, but could also be
the unique object result of a query (e.g., element(...)). The <expression> identifies a
set O of objects. If the operator is +=, then new edges are created from o to each object
in O and given the label <label>. If the operator is -=, then existing edges with the label
<label> from o to objects in O are removed. If the operator is :=, all edges from o with
label <1label> are removed and new edges with label <1abel> are introduced between o and
each object in O.

Observe that we change the type of an object simply by assigning it a value of a different
type, an important convenience feature for semistructured data.

Now let us consider a way of modifying many objects simultaneously. We can do so
using a statement of the form:

update P := <expression>
from <from-clause>
where <where-clause>

where P is a variable bound in the from clause. The from and where clauses are the same
as in the Lorel select statement. The binding of the variables in the from and where
clauses is done before evaluating the update, and the variables may be used in a query
in the <expression>. Logically, the update “P := <expression>” is performed for each
binding in the from clause that satisfies the where clause. We can also modify the values
of multiple objects using += and -= with this construct.

For example, the following query adds the restaurant’s city as a direct subobject of the
restaurant object if the city is Palo Alto or Menlo Park:

update X.city += Z
from Guide.restaurant{X}.address.city Z
where Z = "Palo Alto" or Z = "Menlo Park"

Finally, we observe that it takes two operations to update a label. For example, the
following two statements transform all the restaurant labels to eatery labels.

update Guide.eatery := select Guide.restaurant
update Guide.restaurant := {}
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7.4 Bulk loading

Lorel provides a “load <filename>” statement, which reads the load file <filename> and
creates the objects described in it. In the load file, objects may be of any type. If the object
is atomic, then both its type and value are given together. If the object is complex, then it
is described by its subobjects, which may include other new objects created by the load file
and named objects that existed prior to the load. Cyclic data is supported. A (persistent)
name may be assigned to any new object as part of the load. Lorel’s load statement can
also add additional subobjects to existing named objects. The load file syntax and further
details are given in [HW96].

8 Implementation on Top of an OODB

In this section, we briefly consider how Lorel can be implemented on top of a standard
ODMG database. We first reconsider the type OFM defined in Section 2. Since we have
already discussed in Sections 3-6 the primary aspects of translating Lorel to OQL extended
with heterogeneous objects, we only touch on a few additional issues here, including (very
briefly) the issue of physical database design.

OEM objects can be implemented using the following ODMG Object Definition Lan-
guage (ODL) type definition:

interface 0EM;
interface OEMcomplex: OEM
{ attribute set(struct(label:string,values:set(0EM))) complex-value; };
interface OEMstring: OEM
{ attribute string atomic-value; }
interface OEMint: OEM
{ attribute int atomic-value; }

interface 0OEMnil: OEM;

Changes from the type definition in Section 2 are due to minor restrictions of ODL: (i) the
internal structure of an object is a tuple and cannot simply be an atomic value, which forces
us to introduce the attributes “atomic-value,” and (ii) we need to represent a complex OEM
object as a set of pairs (label, set of values).

The type extent for the type OFM is empty. Certain methods apply to all OEM objects
and are therefore defined in type OFM, although they only have subtype instances. These
are methods to obtain the value(s) of an OEM object, to compare OEM objects, to update
them, etc. For example, the following method can be used to extract subobjects from
complex OEM objects:

set(0EM) field(in string label);

If X is a complex OEM object, the expression X.field(“address”) returns the set of address
subobjects of X. If X is not complex, or if it has no address subobjects, then the empty
set is returned.

The comparators also are defined as methods. For instance, the following methods in
the class OEM are used for comparing OEM objects:
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boolean value-equal(in OEM val)
boolean equal-to-int(in int val)
boolean equal-to-string(in string val)

Note for instance that method equal-to-int is defined as false in class OEM but redefined
in class OFMint as self .atomic-value = val and as self.atomic-value=int-to-real(val)
in class OFMreal.

Updates also are implemented using methods. We do not consider updates that modify
the type of objects since such updates are not permitted in ODMG. Object creation simply
uses the new function with the type (OFEMreal, OEMint, etc.) as the first argument. For
atomic objects, the new function also takes the initial value as argument, and no other
argument for complex OEM objects (which are initialized to empty).

Other update methods are the following;:

boolean assign-real(in real new-value)
boolean assign-int(in new-value)

boolean add-edges(label:string,added-set:set(0EM))
boolean method remove-edges(label:string,removed-set:set(0EM))

All of these methods are defined in the class OFM. When one of the last two methods is
applied to an object that is not complex, it has no effect on the database and simply returns
false. Since we are not considering updates to an object’s type, we say that an improper
update (e.g., assigning a real to a complex object) also has no effect on the database and
returns false. So, in particular, assign-real is redefined only in class real (with obvious
meaning) and in classes integer and string (with the new value appropriately coerced
before performing the update).

We conclude this section by noting that the performance of such an implementation
depends heavily on two issues: clustering and indexes. For clustering, the system should at
least be capable of clustering an object and its subobjects together, recursively. A second
important issue is the use of indexes for managing complex objects with many subobjects.
For example, an index can be used for speeding up the evaluation of the method field
described above.

9 The Lore System

We have implemented Lorel as the query language for our prototype database management
system Lore. Because we are interested in exploring the many facets of managing semistruc-
tured data, Lore has been built entirely from scratch. As we have shown in the previous
section, Lorel could instead be implemented on top of a conventional object-oriented DBMS.
Here we discuss the architecture and query engine that comprise the Lore system. A com-
prehensive discussion of the Lore system is beyond the scope of this paper.

The basic architecture of Lore is depicted in Figure 4. While much of this section will
focus on the query processor, we also briefly describe the textual interface, the HTML
Graphical User Interface, and the object manager.
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Figure 4: Lore architecture

The current Lore system has two user interfaces. There is a simple textual interface,
primarily used by the developers for debugging. The graphical interface, the primary inter-
face for end users, provides powerful tools for browsing query results, a data guide feature
for seeing the structure of the data and formulating simple queries “by example,” a way of
saving frequently asked queries, and mechanisms for viewing the more exotic atomic types
such as video, audio, and java.

The object manager component, which appears just above the persistent storage com-
ponent in the Lore architecture, functions as the interface between the query processor
and the low-level file constructs. It supports basic primitives such as fetching an object,
comparing two objects, performing simple coercion, and iterating over the subobjects of
a complex object. In addition, some performance features, such as a cache of frequently
accessed objects, are implemented in this component.

The query processor, which resides between the user interface and the object manager,
follows the following basic steps when answering a query:

1. the query is parsed,

2. the parse tree is preprocessed to translate it into an OQL-like query,
3. a logical query plan is constructed,

4. query optimization occurs,

5. the optimized logical plan is translated into a physical query plan, and
6. the physical plan is executed.

As an example, consider the following simple Lorel query:
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Figure 5: Sample Lore query plan

select Guide.restaurant.address
where Guide.restaurant.category = 'gourmet"

The query is parsed, then translated into an OQL-like query using the techniques described
throughout this paper. The OQL-like query is:

select Y
from Guide.restaurant X, X.address Y
where exists Z in X.category : Z = "gourmet"

Then, a logical query plan is generated. A plan for our example query is shown in Figure 5.
Although Lorel is based on an object-oriented data model, our query execution strategy is
based primarily on familiar relational operators. The relational “tuples” we operate on are
Object Assignments, or OAs. We use a recursive iterator approach in query processing, as
described in, e.g., [Gra93]. We now explain how OAs are constructed and operated upon
by the nodes in our logical plan.

An OA is a simple data structure containing slots corresponding to range variables in the
query, along with some additional slots depending on the form of the query. For example,
an QA structure for the example query is:

OAO OAl OA2 OA3 OA4
Guide | OAg.restaurant | OA;.address | OAj.category | Aggr

Intuitively, each slot within an OA holds the oid of a node on a data path currently being
considered by the query engine. For example, if OA; has the oid for a restaurant “Saigon,”
then OA5 and OAs can hold the oid’s for one of Saigon’s address subobjects and one of its
category subobjects, respectively. Note that at a given point during query processing, it is
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not necessarily the case that all slots of the current OA contain a valid oid. Indeed, the
function of query execution is to build complete OAs.

We now briefly explain each of the operators in Figure 5. The Scan operator, which is
used in several leaf nodes, is similar in functionality to a relational scan. Here, however,
instead of scanning over all tuples based on the name of a relation, our scan returns all
oid’s that are subobjects of a given oid with respect to a given gpe_component. The Scan
operator is defined as:

Scan (StartingOASlot, gpe_component, TargetOASlot)

Scan starts the search from the oid stored in Starting0ASlot, and at each iteration places
into the Target0ASlot the oid of the next subobject that satisfies the gpe_component. The
gpe_component is a string describing which labels Scan should match, and is similar to
the syntax for gpe_components described in Section 5. Scan is called repeatedly for a given
Starting0ASlot until the TargetOASlot no longer holds a valid oid. For example, consider
the following Scan that appears in our example plan:

Scan (0A1, "address', 0A2)

This scan iterator will place into slot OA,, one at a time, all address subobjects of the oid
in slot OA;. Note the special form for the lower left Scan:

Scan (Root, "Guide', 0AO).

Instead of using an OA slot as the first argument, the value Root, which is a system-known
oid from which all names can be reached, is used.

Each child of a Join node fills information into the current OA. Like a relational nested-
loop join operator, one function of the Join node is to coordinate its left and right children.
For each partially completed OA that the left child returns, the right child is called exhaus-
tively until no more new OAs are possible. Then the left child is instructed to retrieve its
next (partial) OA. The iteration continues until the left side produces no more OAs.

The Select and Project nodes are nearly identical to the corresponding relational op-
erators. The one difference is that while relational select and project deal with relation
and attribute names, in Lore query plans these operators implicitly operate upon the ob-
jects identified by the oid’s within the current OA. Thus, the Project operator is used to
limit which subobjects should be returned by specifying a set of QA slots, while the Select
operator applies predicates to the objects identified in the OA slots.

The Aggregation node (shown in Figure 5 as the right child of the first Join node) is used
in a somewhat novel way. Besides functioning as the standard grouping and aggregation
operation, it also serves as an evaluation mechanism for quantified variables. The aggrega-
tion node groups the OAs received from its child based on the specified slot (OA; in the
example), then applies the aggregation operator, in this case exists. It adds to the specified
slot in the current OA (OAy in the example) the result of the aggregation, which here is the
value true if the existential quantification is satisfied and false otherwise. Filtering of OAs
whose quantification is true occurs in the final Select node. Note that the exists operator
“short circuits” when it finds the first satisfying OA, while other aggregation operators need
to look at all OAs in each group.
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There are some fairly obvious optimizations that can be done to the logical plan in
Figure 5, such as pushing the top Select down the right subtree and moving selection
conditions into scans. In the current Lore query processor, only a few query optimization
techniques are implemented and the physical query plan is very similar to the logical plan.
Thus, we essentially evaluate the plan shown in Figure 5 directly. Implementation of query
optimization and “real” physical plans is under design.

The Lore system includes several novel features in addition to the Lorel language. Of
particular interest are the data guide and external objects:

o The data guide for a given OEM database is an OEM object that encapsulates the
structure of the graph in terms of edge labels, without repeating identical paths
[NUWC96]. Essentially, the data guide provides a structural summary of the current
database, which in a semistructured environment can be extremely useful in under-
standing how the data is structured and formulating queries. In our graphical user
interface, the data guide also can be used to form simple queries in a “by example”
style.

¢ External objects allow Lore to dynamically fetch and integrate information stored in
external data sources during query processing, and cache the information for later use.
Any object in Lore may be a placeholder for an external object, allowing Lore to serve
both as a storage repository for semistructured data and a query-driven integration
engine.

9.1 System status

As of summer 1996 the query processor and the rest of the Lore system is functional and
robust for a subset of the Lorel language. Language features whose implementation is
still underway include path variables, external predicates and functions, complex select
clauses, full aggregation, and the declarative update language. In addition, the complete
functionality of general path expressions is not yet implemented, although a substantial and
very useful subset is. While Lore currently maintains indexing structures, the query plans
are not “intelligent” enough to make use of them yet. As noted above, currently little query
optimization takes place, so there is a considerable amount of work to do in this area of
query processing. Finally, although Lore was designed initially as a “lightweight” DBMS to
be used primarily in single-user or read-only mode, as we find more and more uses for Lore
we are feeling the need to add “heavyweight” features such as transactions, concurrency
control, and recovery.

A Lore server with a number of sample databases is available for public use. Users can
submit queries in the subset of the Lorel query language currently frozen and can experiment
with features such as result browsing, data guides, and external objects. Please visit us at
http://www-db.stanford.edu/lore.
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A Syntax

The complete Lorel syntax appears in Figures 6 and 7. Note that not all the constructs in
the language have been discussed in the body of the paper, since the paper focuses on the
innovative features in Lorel.

In the grammar “{}*” means 0 or more repetitions, “{}+” means 1 or more repetitions,
and “[ ]” means optional. The exception is Rule 25, where [ ] is used to delimit a character
class and the following + means that a sequence of one or more characters can be drawn
from the class.

Rule 19 has a higher precedence than Rule 20, meaning that a path expression consisting
of multiple label expressions separated by dots is parsed as multiple qualified paths, rather
than a single qualified path consisting of multiple paths.

Note that some “factoring” of the grammar has occurred to facilitate parsing, e.g., the
introduction of safe_set_query.
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(1) query

(2) set_query

(3) atomic_query

(4) value_query

(5) query_list

(6) sfw_query

(7) select_expr

(8) from_expr

(9) predicate

sel_query
| atomic_query
| value_query

sfw_query

| path_expr

| sel_query intersect sel_query
| sel_query union sel_query

| sel_query except sel_query

| (set_query)

var
| element(set_query)

*atomic_query

| constant

| pathof(path_var)

| external function name( query_list)
| (query) arith_op (query)

| = query

| abs(query)

| aggr_function(set_query)

query
| (query){, (query)}*

select [ distinct | seleci_expr {, seleci_expr }*
[ from from_expr {, from_expr }* ]
[ where predicate |

query [ as seleci_identifier ]
| select_identifier : query
| new_oem(select_cxpr {, select_expr }*) [ as select_identifier ]

path_expr [ [ as | var ]
| var in path_ezpr

not predicate

| predicate and predicate

| predicate or predicate

| query comp_op query

| safe_sel_query

| exists(set_query)

| boolean_constant

| exists var in safe_sel_query : predicate
| for all war in safe_sel_query : predicale
| safe_query in safe_set_query

| safe_query comp_op quantifier safe_sel_query
| external predicate name(query_list)

| (predicate)

Figure 6: Lorel syntax
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(10) safe_set_query

(11) safe_query

(12) select_identifier

(13) arith_op

(14) comp_op

(15) aggr_function
(16) quantifer

(17) constant

(18) boolean_constant

(19) path_expr

(20) qualified_gpe_component
(21) path_var

(22) var

(23) gpe_component

(24) regexp op

(25) label_expr

(set_query)
| path_expr

(query)

| constant

| variable

| path_expr

| *atomic_query

1dentifier

| unquote(path_var)
+ 1= 1%/ [mod

<|<=l=|<>|>=]|>
| like | grep | soundex

min | max | count | sum | avg
some | any | all

nil

| integer_literal

| real_literal

| quoted_string_literal

| boolean_constant

true | false

var { qualified_gpe_component}+
gpe_component [ @path_var ] [ {var} ]
identifier

identifier

. label_expr

| gpe_component | gpe_component
| gpe_component gpe_component

| (gpe_component) [ regexp_op ]
R

# | [A-Za-20-9% ]+
| unquote(path_var)

Figure 7: Lorel syntax continued
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