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The Lorel Query Language for Semistructured Data�Serge Abitebouly, Dallan Quass, Jason McHugh, Jennifer Widom, Janet WienerDepartment of Computer ScienceStanford UniversityStanford, CA 94402fabitebou,quass,mchughj,widom,wienerg@db.stanford.eduhttp://www-db.stanford.eduAbstractWe present the Lorel language, designed for querying semistructured data. Semi-structured data is becoming more and more prevalent, e.g., in structured documentssuch as HTML and when performing simple integration of data from multiple sources.Traditional data models and query languages are inappropriate, since semistructureddata often is irregular, some data is missing, similar concepts are represented usingdi�erent types, heterogeneous sets are present, or object structure is not fully known.Lorel is a user-friendly language in the SQL/OQL style for querying such data e�ectively.For wide applicability, the simple object model underlying Lorel can be viewed as anextension of ODMG and the language as an extension of OQL.The main novelties of the Lorel language are: (i) extensive use of coercion to re-lieve the user from the strict typing of OQL, which is inappropriate for semistructureddata; and (ii) powerful path expressions, which permit a 
exible form of declarativenavigational access and are particularly suitable when the details of the structure arenot known to the user. Lorel also includes a declarative update language.Lorel is implemented as the query language of the Lore prototype database man-agement system at Stanford (see http://www-db.stanford.edu/lore). In additionto presenting the Lorel language in full, this paper brie
y describes the Lore systemand query processor. We also discuss how Lorel could be implemented on top of aconventional object-oriented database management system.1 IntroductionAs the amount of data available on-line grows rapidly, we �nd that more and more ofthe data is semistructured. By semistructured, we mean that although the data may havesome structure, the structure is not as rigid, regular, or complete as the structure requiredby traditional database management systems. Furthermore, even if the data is fairly wellstructured, the structure may evolve rapidly. Traditional relational database managementsystems require strict table-oriented data, and they are based on the notion that a schema isde�ned in advance and adhered to by all data managed by the system. While object-oriented�This work was supported by the Air Force Wright Laboratory Aeronautical Systems Center under ARPAContract F33615-93-1-1339, by the Air Force Rome Laboratories under ARPA Contract F30602-95-C-0119,and by equipment grants from Digital Equipment and IBM Corporations.yThis author's permanent position is INRIA-Rocquencourt, 78153 Le Chesnay, France.1
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database management systems permit much richer structure than relational systems, theystill require that all data conform to a prede�ned schema.Management of semistructured data requires typical database features such as a lan-guage for forming ad-hoc queries and updates, concurrency control, secondary storage man-agement, etc. However, because semistructured data cannot conform to a standard databaseframework, trying to use a conventional DBMS to manage semistructured data becomes adi�cult or impossible task. At Stanford, the goal of the Lore project (for Lightweight Ob-ject Repository1) is to provide convenient and e�cient storage, querying, and updating ofsemistructured data. This paper presents Lore's query language Lorel (for Lore language).Although we have implemented Lorel in a \home grown" DBMS designed speci�cally forsemistructured data, the data model underlying Lorel can be de�ned as an extension to theODMG model and the language as an extension to OQL. (See [Cat94] for a speci�cation ofODMG and OQL.) Thus, Lorel can be implemented on top of a conventional object-orientedDBMS, yielding a 
exible system suitable for managing both structured and semistructureddata.Semistructured data arises in a number of common situations. Some data sources are de-signed with non-rigid structures for convenience. A concrete example is the ACeDB genomedatabase [TMD92], while a somewhat less concrete but certainly well-known example is theWorld-Wide Web. The Web imposes no constraints on the internal structure of HTMLpages, although structural primitives such as enumerations may be used. Another frequentscenario for semistructured data is when data is integrated in a simple fashion from severalheterogeneous sources and there are discrepancies among the various data representations:some information may be missing in some sources, an attribute may be single-valued inone source and multi-valued in another, or the same entity may be represented by di�erenttypes in di�erent sources.When querying semistructured data, one cannot expect the user to be fully aware of thecomplete structure, especially if the structure evolves dynamically. Thus, it is importantnot to require full knowledge of the structure to express meaningful queries. At the sametime, we do want to be able to exploit regular structure during query processing when ithappens to exist and the user happens to know it.In the remainder of this introductory section we �rst present some examples of semistruc-tured data and queries over that data in English and in Lorel. We then further explain therelationship of Lorel and its underlying data model with OQL and ODMG. We �nallydiscuss related work and preview the remainder of the paper before delving into the details.1.1 ExamplesWe give two example queries to demonstrate the simplicity and power of Lorel on semistruc-tured data. Details of Lorel are given in later sections of the paper. For these examples,we assume a Guide database that collects information on local restaurants from a varietyof sources (newspaper reviews, regional guidebooks, personal web pages, etc.). The �rstexample shows how Lorel handles type coercion, which is important when the underlying1The Lore system is \lightweight" in two senses: the object model supported by Lore is lightweight,and the system itself is lightweight in that currently it does not support locking, logging, security, or other\heavyweight" DBMS features. 2
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data is untyped, irregularly typed, or may have missing �elds. The second example showsthe use of \wildcards" and regular expressions in Lorel, which are important when thestructure of the data is irregular or unknown.Example 1: Find the addresses of all restaurants in the 92310 zipcode. The Lorel querydirectly follows from the English statement:select Guide.restaurant.addresswhere Guide.restaurant.address.zipcode = 92310It is not necessary to know if the zipcode is represented as an integer or a string valuebecause Lorel will coerce it accordingly, and if some zipcodes are strings and others areintegers the expected result will still be retrieved. Furthermore, an address that does notcontain a zipcode will not cause an error, but will simply fail the where condition. In mostquery languages, such as SQL and OQL, a type error will ensue if the types do not match orif a �eld is missing. In addition, in Lorel it is not necessary to worry about the cardinality(set versus singleton) of components in the path expressions, unlike in OQL. If a restauranthas several addresses, or several zipcodes for the same address, the expected result still isreturned; i.e., we get any address with any 92310 zipcode.Example 2: Find the names and zipcodes of all \cheap" restaurants. This time, we donot assume that the zipcode is a part of the address, but it may instead be a direct subobjectof the restaurant. Also, we do not know if the string \cheap" will be part of a category,price, description, or other subobject. We are still able to ask the query in Lorel as follows:select Guide.restaurant.name, Guide.restaurant(.address)?.zipcodewhere Guide.restaurant.% grep "cheap"The \?" after :address means that the address is optional in the path expression. Thewildcard \%" will match any subobject restaurant, and the comparison operator grep willreturn true if the string \cheap" appears anywhere in that subobject value. There is noequivalent query in SQL or OQL, since neither allow regular expressions or wildcards.1.2 Lorel and OQLThe data model underlying Lorel is called OEM (for Object Exchange Model). OEM is asimple and 
exible object model, introduced initially in the TSIMMIS project at Stanford[PGMW95]. Roughly speaking, a database conforming to OEM can be thought of as agraph with complex values at internal nodes, atomic values at leaf nodes, and labeled edges.2Although the Lorel language could be presented \from scratch" based on OEM, as we havedone with a previous version of Lorel [QRS+95a], for clarity and wider applicability we havechosen instead to de�ne Lorel formally as an extension to OQL based on an OEM extensionto the ODMG model. For users familiar with OQL, the additional features introduced byLorel for handling semistructured data are simple to learn. On the other hand, knowledge of2Some minor changes to the original model have been introduced to facilitate Lorel, e.g., labels were onvertices instead of edges in the original model, and we have added distinguished names as entry points intothe database. 3
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ODMGFigure 1: Relationship between Lorel and OQLOQL is not at all necessary to use Lorel, since the most common Lorel queries are expressedeasily in a compact and intuitive form reminiscent of simple SQL.To de�ne the semantics of Lorel over an OEM database in terms of OQL and ODMG,we add to the ODMG model a new type to represent OEM objects. Then, a core part ofthe formal Lorel language de�nition is to extend equality (and other base predicates andfunctions) in OQL to handle OEM objects. The extension relies heavily on coercion at anumber of levels to relax the strong typing of OQL. At the same time, Lorel extends OQLwith powerful and 
exible path expressions, which allow querying without precise knowledgeof the structure. Path expressions are built from labels and wildcards (place-holders) usingregular expressions, allowing the user to specify rich patterns that are matched to actualpaths in the database graph.The relationship between Lorel/OEM and OQL/ODMG is depicted in Figure 1. Lorelcan be translated syntactically to an extension of OQL that includes heterogeneous objects,described in Section 3, and path variables and wildcards, described in Section 5. (Conse-quently, many of the convenience features included in Lorel actually are syntactic sugaringover such an extension of OQL.) The query processor in the Lore system performs exactlythis mapping before accessing an OEM data store; the process is depicted by the solidarrows in Figure 1, and the Lore system implementation is described in somewhat moredetail in Section 9. We can also encode OEM objects in the ODMG model, in which caseLorel can be mapped to pure OQL. This process is depicted by the dashed arrows in Figure1. Section 8 discusses how this approach can be used to implement Lorel on top of anODMG-conforming database management system, such as O2 [BDK92].4
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1.3 Related workA �rst version of Lorel (now dubbed Lorel1) was introduced in [QRS+95a] and implementedin the initial version of the Lore system. Lorel1 was designed and de�ned from scratch, in-cluding a full denotational semantics for the language given in [QRS+95b]. As mentionedearlier, we decided to base the new version of Lorel (dubbed Lorel96) on an existing querylanguage, since this approach provides a well-understood semantics and has wider applica-bility. The syntax of simple queries is almost identical in Lorel1 and Lorel96. However, thesyntax for more complex constructs has changed, e.g., for aggregation, path variables, andconstruction of complex query results. In addition, because we now de�ne Lorel in termsof OQL, coercion takes on an importance in Lorel96 that it did not have in Lorel1. A de-tailed comparison of Lorel1 with more conventional languages such as OQL [Cat94], XSQL[KKS92], and SQL [MS93] appears in [QRS+95a]; most comparisons carry over directly toLorel96.Another OEM-based language called MSL has been designed for mediator speci�cationin the Stanford TSIMMIS project [PGMU96, PAGM96]. MSL is a rule-based language thatwas designed with a di�erent goal than Lorel, namely to specify the integration of datadrawn from multiple sources. We plan to try to characterize the relative expressiveness ofMSL and Lorel.A work closely related to ours is a language called UnQL, also designed for queryingsemistructured data. UnQL is based on a model similar to OEM [BDS95]. A primaryfeature of UnQL is a powerful construct called traverse that allows restructuring of trees toarbitrary depth. Such restructuring operations not expressible in Lorel, which was designedprimarily as a simple to use query language.In [CACS94, CCM96], extensions to OQL are proposed that are somewhat similar inspirit or goals to Lorel. In [CACS94], a more rigidly typed approach is followed, but becauseheterogeneous collections are introduced, the model still has a strong similarity to OEM.However, the language proposed in [CACS94], called OQL-doc, does not use coercion theway it is used in Lorel, and the treatment of path expressions is quite di�erent. Optimizingthe evaluation of generalized path expressions is considered in [CCM96]. Their optimizationis based on two object algebra operators, one dealing with paths at the schema level andone with paths at the data level. Since we are in a schema-less context, we cannot directlyuse their optimization techniques. However, we describe brie
y in Section 9 the concept ofa \data guide", which may serve the role of a schema for an OEM database. We plan toconsider adapting the optimization techniques of [CCM96] to OEM using the data guide.Also related to our work are several query languages for the World-Wide Web that haveemerged recently, e.g., W3QL [KS95], which focuses on extensibility, WebSQL [MMM96],which provides a formal semantics and introduces a notion of locality, and WebLog [LSS96],which is based on a Datalog-like syntax. Additional relevant work includes query languagesfor hypertext structures, e.g., [MW95, BK94, CM89, MW93], and work on integratingSGML [GR90] documents with relational databases [BCK+94] or object-oriented databasessuch as OpenODB [YA94] or O2 [CACS94], since SGML documents can be viewed assemistructured.In the area of heterogeneous database integration, which as we have suggested is acommon scenario for semistructured data, most work has focused on integrating data in well5
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structured databases. In particular, systems such as Pegasus [RAK+92] and UniSQL/M[Kim94] are designed to integrate data in object-oriented and relational databases. At theother end of the spectrum, systems such as GAIA [RJR94], Willow [Fre94], and ACL/KIF[GF94] provide uniform access to data with minimal structure.Note that environments such as CORBA [OMG92] and OLE2 [Mic94] operate at adi�erent level from Lorel. These approaches provide a common protocol for passing messagesbetween objects in a distributed object environment. In distributed settings, Lorel couldcertainly be built on top of and take advantage of environments such as CORBA and OLE2.We believe that the powerful and user-friendly features of Lorel, together with a cleansemantics inherited from OQL, a declarative update language, and a working prototypeimplementation, make Lorel unique among the languages cited above in the context ofmanaging semistructured data.1.4 Outline of paperSection 2 speci�es the Object Exchange Model (OEM) and explains how it can be viewed asan extension to the ODMG model. Sections 3{6 together specify the Lorel query language.Section 3 discusses the �rst important novel concept of Lorel, namely its extensive useof coercion. Sections 4 and 5 introduce the second important concept, path expressions.Simple path expressions are described in Section 4, while more complex expressions areintroduced in Section 5. Section 6 describes how results of Lorel queries are constructed.Lorel's declarative update language is speci�ed in Section 7. Section 8 suggests how Lorelcould be implemented on top of an object-oriented DBMS. Finally, Section 9 brie
y coversthe Lore system, describing the overall architecture and features, as well as explaining queryprocessing in somewhat more detail. Section 9 also covers the status of the implementation,availability of the system, and plans for future work. Appendix A contains a grammar forthe full Lorel language. Note that not all constructs of Lorel are described in the body ofthe paper; rather, the paper focuses on those aspects of Lorel that are novel and designedspeci�cally for semistructured data.2 The Object Exchange ModelIn this section we present the Object Exchange Model (OEM) [PGMW95], a data modelparticularly useful for representing semistructured data. Data represented in OEM can bethought of as a graph, with objects as the vertices and labels on the edges. We will showhow OEM also can be treated as an extension to the ODMG data model.In the OEM data model all entities are objects. Each object has a unique object identi�er(oid) from the type oid. Some objects are atomic and contain a value from one of the disjointbasic atomic types, e.g., integer, real, string, gif, html, audio, java, etc. All otherobjects are complex; their value is a set of object references, denoted as a set of (label; oid)pairs. The labels are taken from the atomic type string.In Figure 2, we show an example OEM database. Each line shows the label used toreach an object and the object's oid. If the object is atomic, its value is also given on thatline. If the object is complex, and has not been described earlier, subsequent indented linesdescribe its object references or \subobjects." For example, the object with oid &77 has6
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Guide &12restaurant &19category &17 "gourmet"name &13 "Chef Chu"address &14street &44 "El Camino Real"city &15 "Palo Alto"zipcode &16 92310nearby_eating_place &35nearby_eating_place &77restaurant &35category &66 "Vietnamese"name &17 "Saigon"address &23 "Mountain View"address &25 "Menlo Park"nearby_eating_place &19zipcode &54 "92310"price &55 "cheap"restaurant &77category &79 "fast food"name &80 "McDonald's"price &55Figure 2: Textual representation of objects in an OEM database
7
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three references: (category ;&79), (name;&80), and (price;&55). The object with oid &79is an atomic object of type string whose value is \fast food".We adopt the ODMG feature of distinguished (object) names. There are many facetsto the concept of name:� A name can be viewed as an alias for an object in the database. For instance, Guideis the name of the object in Figure 2 that contains a collection of restaurants, i.e.,object &12.� As seen in the example queries, a name serves as an entry point to the database.Indeed, the only way objects can be accessed in queries is via paths originating fromnames.� As in the ODMG model, we require that all objects in the database are reachablefrom one of the names. (The rationale is that if an object becomes unreachable, noquery will ever manage to access it, so the object might as well be garbage collected.)Hence, names also serve as roots of persistence: an object is persistent if it is reachablefrom one of the names.OEM can easily model relational data, and, as in the ODMG model, hierarchical andgraph data. (Although the structure in Figure 2 is close to a tree, there is some graphstructure, and even a cycle via objects &19 and &35.) However, we do not insist thatdata is as strongly structured as in standard database models, allowing us to model, e.g.,semistructured information sources, data that originates from the integration of heteroge-neous sources, and documents that do not conform to a precise schema. Observe in Figure 2that, for example: (i) restaurants have zero, one, or more addresses; (ii) an address is some-times a string and sometimes a complex structure; (iii) a zipcode may be a string or aninteger; and (iv) the zipcode occurs in the address for some restaurants and directly un-der restaurant for others. Lorel is designed to handle incompleteness of data, as well asstructure and type heterogeneity, as exhibited in this example database.We now give a formal de�nition of an OEM database, treated as a graph.De�nition: An OEM schema consists of a �nite set of names R. An OEM instance of Rconsists of: (i) a �nite labeled graph (Va [ Vc; E) where Va and Vc are disjoint sets of oid'scorresponding respectively to atomic and complex objects, and the edges in E are labeled bystrings; (ii) a name function from R to Va [Vc; and (iii) a value function val that maps theobjects in Va to atomic values. The instance must also satisfy the following two conditions:1. Atomic vertices have no outgoing edges.2. Each vertex is reachable from object name(N) for some name N in R. 2We say that an object o1 2 Va[Vc is an l subobject of object o2 2 Va[Vc if there is an edgein E from o2 to o1 labeled l.3Figure 3 provides an example of an OEM database as a graph. It corresponds to thedata given textually in Figure 2.3Note, however, that the subobject relationship is not one of containment|an object can be a subobjectof many other objects. 8
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gourmet    Chef Chu Figure 3: An OEM graph2.1 Extending the ODMG data modelWe now show how we can extend the ODMG data model to represent semistructured databy \typing" OEM objects as ODMG objects. This approach provides additional intuitionto readers familiar with the ODMG model. It also allows us to use OQL as a basis forde�ning the Lorel language. Finally, it suggests an implementation of Lorel on top of atraditional object database system, discussed further in Section 8.The di�culty in typing OEM objects is clearly the heterogeneity of the OEM data. Todeal with the heterogeneity, we think of a complex OEM object as a tuple consisting of�elds a1, a2, . . . , an, where a1 : : : an are all labels currently present in the database. (Wecould alternatively think of a complex object as a tuple with in�nitely many �elds, one foreach possible string label. Such objects could still be represented �nitely, since at each timeonly a �nite number of �elds is nonempty for each object.)An important consequence of this encoding is that all complex objects in the databaseare of the same type, namely OEM, formally speci�ed below. In particular, all names in anOEM database are of this type. The value of the ai �eld for a particular OEM object o isthe (possibly empty) set of ai subobjects of o, i.e., the set of objects referenced from o viaan ai-labeled edge. If o does not reference any objects using an ai-labeled edge, it still hasan ai �eld but the value of that �eld is empty.For example, in the database shown in Figure 2, complex objects are typed by repre-senting them as tuples with restaurant, category, name, address, nearby, street, city,and zipcode �elds. For the object with oid &12, the restaurant �eld would contain theset (&19, &35, &77); all other �elds would be empty.In the type de�nitions below, we use the symbol \+" to denote union of types. The9
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OEM type is as follows.type OEM = OEMcomplex + OEMstring +OEMint + :::+ OEMniltype OEMcomplex =struct(a1 : set(OEM ); :::; an : set(OEM ))type OEMstring = stringtype OEMint = integer:::type OEMnil = ()where a1; :::; an is the list of distinct labels occurring in the database. Only integer andstring atomic values are shown explicitly in order to simplify the presentation. There is asingle object in type OEMnil, namely the oemnil object, whose purpose will become clearin Section 4. The de�nition above is not quite a valid ODMG type since the ODMG modeldoes not support union of types. We consider the \coding" of OEM objects as pure ODMGobjects for implementation in an ODMG database in Section 8.For an object X and a label l, the expression X:l denotes the set of l subobjects ofX . If X is an atomic object or if l is not a label occurring in the database (the two caseswhere X has no l �eld), X:l is the empty set. Observe that X:l always denotes a set ofobjects. Having an expression always result in the same type regardless of the structure ofthe underlying data is a key idea in extending OQL to handle semistructured data.3 CoercionIn this and the following three sections we describe in detail the novel aspects of the Lorelquery language, namely coercion and powerful path expressions, and we explain how queryresults are constructed. For readability, we present these features primarily in terms ofhow they extend the OQL language. Note that since we are focusing only on featuresdesigned speci�cally for handling semistructured data, many other useful features of theLorel language|some inherited from OQL and others not|are not covered; see AppendixA for a speci�cation of the full Lorel language.One of the main issues in de�ning Lorel as an extension to OQL is to coerce comparisonsbetween objects and/or values to \do the intuitive thing" (rather than return a type error)when comparing objects and values of di�erent types. In this section we illustrate theneed for coercion by an example, de�ne precisely the coercion we use, and introduce anew comparison operator that is very useful for semistructured data. We assume heresome rudimentary knowledge of OQL syntax and semantics, although most queries areself-explanatory.Let us consider carefully a query asking for the addresses of all restaurants with zipcode92310, ignoring for the moment that zipcode could be nested within address. Using pureOQL syntax (although Lorel permits simpler expression of the same query), the query is:select X.addressfrom Guide.restaurant X, X.zipcode Ywhere Y = 92310 10
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Strictly speaking, X is an object (e.g., object &35) and Y is a zipcode subobject of X (e.g.,object &54). So, although the query corresponds to our intuition, in OQL there would bea type error in equating Y , an object, and 92310, an integer. In Lorel, this query is legaland returns the desired result.A guiding principle for Lorel is that a query that makes sense should never result in arun-time error on any OEM data. Also, to write a query one should not have to know theprecise structure of complex objects, nor should one have to bother with the precise typesof atomic objects. This 
exibility is achieved: (i) by extending the base predicates (e.g., =)and base functions (e.g., +) of OQL to perform extensive coercions (Sections 3.1 and 3.2),and (ii) by de�ning a new value-based equality operator (Section 3.3). Readers familiarwith object-oriented languages may think of the extended predicates and functions as callsto methods attached to the type OEM (see Section 8).3.1 Comparing values and atomic objectsIn general, certain predicates and functions expect arguments of particular atomic types.Sometimes they accept more than one type; e.g., the comparator < works for integers andfor reals. In the context of semistructured data, we prefer to accept conditions such asZ = 1:0 and Z > \0.9" as true if Z is an object of value 1 or even of value \1". In thissection, we consider coercion when comparing atomic objects and values. Coercion used tocompare complex objects or collections of objects is considered in the next section.We focus �rst on the basic comparison operators (e.g., =,<,6=). When comparing atomicobjects and values, we want to coerce the two operands to values that are comparablewhenever possible. Let us assume that X is an integer OEM object. To compare X toan integer, say 555, we must �rst coerce the object X to its value by dereferencing it. Tocompare X to a real, we must �rst dereference X , then coerce its integer value to a real.The process is guided by the type of the operands. For an integer object X , the comparisonto an arbitrary atomic value Y proceeds as follows.let X 0 be the value of X ;case Y ofinteger: compare X 0 and Y ;real: compare int-to-real(X 0) and Ystring: if Y cannot be coerced to real then falseelse compare int-to-real(X 0) and string-to-real(Y )If there are additional coercible atomic types they are included in the case statement.In general, coercion rules should be provided for the basic atomic types and the cor-responding predicates and functions. They also could be provided for application-speci�catomic types, e.g., coercion of dollars to francs, months to days, gifs to jpegs, etc. Ta-ble 1 shows (omitting dereferencing) the coercion that takes place for atomic types string,integer, and real, for the basic comparison operators (=; <; 6=). Note that the symmetriccases are omitted. Coercion for the basic comparison operators is not trivial because of theneed to coerce both values to comparable atomic types.4 For example, in the comparison4This particular table was the outcome of a lively Lore meeting at Stanford. An interesting issue (notaddressed in this paper) is the development of access techniques, e.g., indexing [Raj96] or hashing, to supportsuch comparisons. 11
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arg2arg1 string real intstring � string ! real both! realreal � int! realint �Table 1: Coercion for basic comparison operators\4.3" < 5, both the string \4.3" and the integer 5 must be coerced to real in order toperform the comparison.Coercion for other (non-arithmetic) comparison operators can be much simpler. Forinstance, Lorel also includes the string-based comparators like, grep, and soundex, whichexpect operands of a precise atomic type (string). The rule in this case is simply to coerceboth operands to the expected atomic type, if possible.Not all atomic types are comparable, e.g., we cannot compare gif images and audioclips. In the case of comparing values of incomparable atomic types, the comparison doesnot return an error|it simply returns false. Furthermore, even when the atomic types arecomparable the coercion may fail, e.g., the string \apple" cannot be compared to an integer.In these cases also the comparison returns false.Besides comparators such as those mentioned above, we also need to use coercion forthe functions of the language, such as the arithmetic functions (addition, multiplication,etc.). Coercion for functions is handled similarly.3.2 Comparing objects and sets of objectsIn this section, we consider the use of coercion in comparing atomic objects, complex objects,and sets of objects. In Lorel, a variable X can be assigned to either an atomic value, anatomic object, a complex object, or a set of objects. Table 2 presents the coercion rulesfor equality. The coercion rules for inequality are similar. Again, the symmetric cases arenot shown.Note that some of the cases in Table 2 were covered in Section 3.1. For instance,to compare a value and an atomic object, we �rst dereference the object. This leads tocomparing two atomic values, which is handled by the coercion rules of Table 1. Let usconsider the new cases.Object against object. In this case, equality is exactly as in OQL: by oid comparison.However, users often want to compare objects using value equality. For instance, in query-ing \what are the restaurants that have a nearby restaurant with the same zipcode," theintension in comparing zipcodes is more likely value than object equality over zipcode. Weconsider another equality operator, ==, in the next section that forces value equality whencomparing objects. The issue of value versus object equality does not arise for inequal-ity operators (such as <), since inequality operators are not de�ned on objects (i.e., thecomparison fails and returns false) but only on values.12
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arg2 atomic set complexarg1 value object of objects objectvalue coerce dereference existential falsewith =atomic object = existential falseobject with =set set falseof objects equalitycomplex object =object Table 2: Coercion for equality =Value, atomic object, or set of objects against a complex object. We do notknow which subobject of the complex object should be used in the comparison. Thus, thecomparison fails and returns false.Set of objects against set of objects. In this case standard set equality is used: foreach element of one set there must be an equal element in the other set.Value or atomic object against set of objects. This is the most interesting case.Consider the following example query, again expressed in OQL syntax:select X.addressfrom Guide.restaurant Xwhere X.name = "Chef Chu"The condition X.name = "Chef Chu" seems to be another example of a type error sincetechnically X:name is a set (all name subobjects of X). However, the user may believethat name is a single-valued attribute or may not care whether this is the case or not. InLorel, we interpret this where clause as:where exists Z in X : Z = "Chef Chu"The comparison of Z to a string now follows the coercion rules of Table 1. This approachcaptures the intension of users who expect a single name �eld, while gracefully handlingrestaurants with multiple names. Introducing the existential quanti�cation can be viewedas a form of coercion from a set to an element. The coercion involved when comparing anobject to a set of objects is similar.3.3 More on equalityAs mentioned earlier, in semistructured environments users are interested primarily in thevalues of objects. Thus, value equality is often more appropriate than oid equality in Lorel.In Lorel we have chosen to retain oid equality for the comparison of objects with objectssince it may sometimes be useful to test whether the same OEM object occurs in two13
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arg2 atomic set complexarg1 value object of objects objectvalue coerce dereference existential falsewith ==atomic value = existential falseobject with ==set existential falseof objects with ==on both sidescomplex value =object Table 3: Coercion for equality ==\locations" (i.e., detect the sharing of a subobject). To handle value equality we introducea new operator, denoted \==". This operator is not a substantial increase in complexity|anaive user of Lorel could use only this form of equality, ignore =, and almost certainly getthe desired result.Let us illustrate the use of == by an example. Consider the following query:select X.namefrom John.name JN, John.child X, X.name XNwhere JN == XNThe intended meaning is \retrieve the children of John bearing his name." We will seea simpler way of expressing this query below. Note that JN and XN are the names ofJohn and a child of John, respectively. The operator == expects atomic values on bothsides of JN == XN , so coercion is performed to obtain the object values, which results incomparing the two strings and not the oid's. Note that had we used = instead of == in thequery, we would not get the desired answer (assuming names are stored as separate atomicobjects and not shared).A better way to express the previous query is:select X.namefrom John.child Xwhere John.name == X.nameThis is a case of the comparison of two sets. Since the == predicate expects atomic values,the sets are coerced into atomic values using existential quanti�cation as follows:select X.namefrom John.child Xwhere exists JN in John.name :exists XN in X.name : JN == XNwhere JN == XN itself involves coercion to string values.The coercion rules for operator == are summarized in Table 3.14
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4 Simple Path ExpressionsWhen querying semistructured data, especially when the exact structure is not known, it isconvenient to use a form of \navigational" querying based on path expressions. The idea isto specify paths in the OEM graph based on the sequence of labels on edges. In this section,we describe simple path expressions, which allow one to obtain the set of objects reachableby following a sequence of labels starting from a named object in the OEM graph. A morepowerful form of path expressions based on wildcards and regular expressions is describedin Section 5.A simple path expression is a sequence Z:l1: : : : ln, where l1; : : : ; ln are labels and Z is anobject name or a variable denoting an object. A data path is a sequence o0; l1; o1; : : : ; ln; on,where the oi's are objects and, for each i, there is an edge labeled li between oi�1 and oi.Starting from an object Z = o0 there may be several data paths that \match" the simplepath expression Z:l1: : : : ln. Path expressions are an extremely convenient and user-friendlyfeature of Lorel. However, as we will see, simple path expressions are merely a syntacticconvenience. Indeed, we explain the semantics of simple path expressions in this section bydescribing how they can be reduced in a query to one or more OQL-style object-componentreferences.We �rst illustrate this reduction with an example. Consider the object named Guide andthe simple path expression Guide:A:B:C. This path can be interpreted navigationally as:start from object Guide, follow an A edge, then a B, and �nally a C edge. Since there arepossibly many A, B, and C labeled edges, the path expression can be matched to a numberof data paths in the OEM graph. Alternatively, we can interpret this path expression usingOQL-style object-component referencing: Guide:A denotes the set of objects R with an Aedge from Guide to R, Guide:A:B denotes the objects Z such that for some R in Guide:A,there is a B edge from R to Z, and similarly for Guide:A:B:C. The following concreteexample illustrates the notion. The Lorel query on the left is equivalent to the OQL queryon the right with the path expression reduced.select Z select Zfrom Guide.restaurant.zipcode Z from Guide.restaurant R, R.zipcode ZThe precise reduction of a simple path expression depends upon whether the path expressionappears in the from, select, or where clauses. We consider each case in turn.4.1 From clauseThe case of a path expression appearing in the from clause was illustrated by the previousexample. Indeed, as the example suggests, the general intuition for reducing path expres-sions in the from clause is to insert a variable after each label. The actual algorithm issomewhat more complex since Lorel gives a particular semantics to common pre�xes ofmultiple path expressions.Consider the following from clause:from Guide.restaurant.address.zipcode Z,Guide.restaurant.name N 15
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In SQL, the name of a relation is used as a variable that ranges over the relation. Inessentially the same spirit, we want to think of Guide.restaurant as a variable that rangesover the restaurants, so two occurrences of this path expression are then bound to the samevariable. The previous from clause is thus translated to:from Guide.restaurant R,R.address A,A.zipcode Z,R.name NThe general case follows directly from this example.4.2 Select clauseWe now consider simple path expressions in the select clause. Two cases arise: either theentire path expression also occurs in the from clause or it does not.If a path expression in the select clause also occurs in the from clause (possibly as apre�x of a longer path expression), then after translating the from clause we already havea variable that denotes the meaning of the path expression. It therefore su�ces to replacethe path expression by the corresponding variable. More precisely, the largest pre�x of apath expression in the select clause that also occurs in the from clause is replaced by thevariable introduced in the from clause for that pre�x. For example, the query:select Guide.restaurantfrom Guide.restaurant.address.zipcode Zwhere Z = 92310is translated to:select Rfrom Guide.restaurant R,R.address A,A.zipcode Zwhere Z = 92310Now suppose that path expression p = X:l1: : : : ln in the select clause shares a commonpre�x with a path expression in the from clause only up to label li, 1 � i < n. Then foreach assignment to the variables in the from clause, p returns the set of objects resultingfrom the path expression vi:li+1: : : : ln, where vi is the variable assigned in the from clauseto vi�1:li, and vi�1 is de�ned similarly (by recursion). This set can be expressed in OQL bytranslating the remainder of p after label i to a nested select clause returning the resultof vi:li+1: : : : ln. For example, the query:select Guide.restaurant.address.zipcodefrom Guide.restaurantis translated to:select (select Z from R.address A, A.zipcode Z)from Guide.restaurant R 16
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This query returns the set of zipcodes associated with each restaurant. Observe that for agiven restaurant, the zipcodes or even the addresses of the restaurant may be empty sets,but the query does not return an error.4.3 Where clauseFinally, we consider path expressions occurring in the where clause, which is the mostchallenging case.As in the select clause, if a path expression in the where clause is a pre�x (not neces-sarily strict) of some path expression in the from clause, we replace the path expression bythe corresponding variable from the from clause. Now suppose the path expression is notsuch a pre�x, and consider a simple example:select Guide.restaurantfrom Guide.restaurantwhere Guide.restaurant.address.zipcode = 92310This query compares a set of zipcodes to an integer. Thus, by the coercion rules introducedin Section 3 we get:select Rfrom Guide.restaurant Rwhere exists A in R.address :exists Z in A.zipcode : Z = 92310The query will return the restaurants that have at least one address with at least one zipcodematching 92310.When generalizing this treatment of simple path expressions, a di�culty arises from thefact that the same simple path expression may occur more than once in the where clausewithout occurring in the from clause. Following our general philosophy that identical pathexpression pre�xes should match the same data paths, we would like to have all occurrencesrelate to the same existentially quanti�ed variable. For instance, consider the query:select Guide.restaurant.namefrom Guide.restaurantwhere Guide.restaurant.address.zipcode = 92310 or(Guide.restaurant.address.street = "El Camino Real"and Guide.restaurant.address.city = "Palo Alto")that returns the names of all restaurants having an address with a zipcode of 93210, orthat are located on El Camino Real in Palo Alto. One possibility is to place all existentialquanti�ers at the beginning of the where clause, as in the following query:select Rfrom Guide.restaurant Rwhere exists A in R.address : exists Z in A.zipcode :exists S in A.street : exists C in A.city :(Z = 92310 or (S = "El Camino Real" and C = "Palo Alto"))17
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But this solution is not satisfactory for semistructured data, since it would discard a restau-rant R that has an address with zipcode 92310 in cases where the address has no street. Inthe above query, R would not be selected since \exists S in A.street" would fail.5To overcome this di�culty, the newly introduced variables are also allowed to take thevalue oemnil. The presence of this value in any condition makes the condition false: oemnil= oemnil is false and so is not(oemnil = oemnil). This approach guarantees that existentialquanti�cation will not \block" the evaluation of the condition, nor will it make the conditiontrue by \mistake" because of the nil objects. Now the (correct) translation of the previousquery is:select Rfrom Guide.restaurant Rwhere exists A in (X.address union set(oemnil)) :exists Z in (A.zipcode union set(oemnil)) :exists S in (A.street union set(oemnil)) :exists C in (A.city union set(oemnil)) :(Z = 92310 or (S = "El Camino Real" and C = "Palo Alto"))We conclude this section with three �nal topics: the implementation of simple pathexpressions; the sharing of path expressions between the select and where clauses; andallowing queries without a from clause.4.4 Implementing simple path expressionsAlthough oemnil is needed for the general case, in many cases we can avoid using it. Itusually su�ces to \push" each existential quanti�er to the innermost point in the whereclause such that it encompasses all occurrences of its corresponding variable. For example,the query in the previous section can be translated instead to:select Rfrom Guide.restaurant Rwhere exists A in R.address :( (exists Z in A.zipcode : Z = 92310) or( (exists S in A.street : S = "El Camino Real") and(exists C in A.city : C = "Palo Alto") ) )The existential quanti�er for address needs to be placed surrounding all three conditionsinvolving address, but each of the other existential quanti�ers need surround only onecondition. In this case, a restaurant R having an address A with a zipcode Z of 92310would succeed in the where clause even if A:street or A:city were missing.Unfortunately, this approach fails in certain unusual cases, as shown by the followingtwo queries that are not equivalent:5This problem explains why the notion of partial object assignmentswas introduced to de�ne the semanticsof Lorel1 [QRS+95a]. The remainder of this subsection essentially shows how to achieve the e�ect of partialobject assignments in OQL. 18
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select A.H select A.Hfrom someroot.somelabel A from someroot.somelabel Awhere ( A.B.C = 5 where exists b in A.B : exists d in A.D :or A.D.E = 6 ) and ( (exists c in b.C : c = 5) or( A.B.F = 7 (exists e in d.E : e = 6) ) andor A.D.G = 8 ) ( (exists f in b.F : f = 7) or(exists g in d.G : g = 8) )The absence of a D edge always makes the right one false, whereas the left is true if thereare appropriate A:B:C and A:B:F paths. Note that adding a union with oemnil for eachexists clause in the righthand query would yield the correct answer. It is possible to usea simple test to: (i) verify whether an expression is free of the pathological behavior of thelast example; and (ii) if it is, push existential quanti�cation as shown above and avoid theuse of oemnil.4.5 Select and where clausesA path expression common to the select and the where clauses will use the same variableonly if this path expression also occurs in the from clause. Consider for instance:select Guide.restaurant.pricefrom Guide.restaurantwhere Guide.restaurant.price > 25This query is translated to OQL as follows:select (select P from R.price P)from Guide.restaurant Rwhere exists Q in R.price : Q > 25A subtlety is that there is no connection between the prices in the select and where clause.All prices for a restaurant that has at least one price over 25 are retrieved, even those pricesthat are less than 25. To keep only those prices above 25, one must write:select (select P from R.price P where P > 25)from Guide.restaurant Rwhere exists Q in R.price : Q > 25Observe the di�erent roles of the two clauses: the where clause �lters restaurants, whereasthe embedded query in the select clause �lters prices.4.6 Omitting the from clauseQueries in Lorel need not have a from clause. If a from clause is not provided in the query,it is generated from the select clause by introducing a path expression in the from clause19
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for each path expression in the select clause.6 If the from clause is omitted, the selectclause can only consist of paths originating from database names. For example:select Guide.restaurant.namewhere Guide.restaurant.category = "gourmet"becomesselect Guide.restaurant.namefrom Guide.restaurantwhere Guide.restaurant.category = "gourmet"which brings us back to familiar ground. By using simple path expressions and omitting thefrom clause, we �nd that straightforward queries are extremely easy to express in Lorel, andwe shall express them in this manner in the remainder of the paper when it is appropriateto do so.5 General Path ExpressionsIn this section, we extend the notion of simple path expressions to a more powerful syntax forpath expressions, called general path expressions. (Note that our general path expressionsare not the same as the generalized path expressions of [CCM96].) Disregarding the detailsof the syntax for the moment, examples of general path expressions are:Guide.restaurant(.address)?.zipcodeGuide.restaurant.#@P.comp%.nameGuide.restaurant(.nearby)*{R}.nameThe �rst expression speci�es the paths starting from Guide, following a restaurant edge,then a zipcode, with an optional address in between.Ignoring the term @P , the second expression speci�es paths starting from Guide with arestaurant edge, followed by an arbitrary number of edges with unspeci�ed labels (symbol#), followed by an edge having a label beginning with \comp" (comp%), and �nally termi-nating with an edge labeled name. The path variable P is bound by @P to each data paththat matches \#" in this path expression.Ignoring the term fRg, the last expression speci�es all paths going through a restaurantedge, then an arbitrary number (symbol �) of nearby edges, and �nally a name edge. Foreach data path matching this path expression, the (object) variable R is bound by fRg tothe object immediately before the name label. Note that fRg is just a useful syntactic wayto attach variables to objects in the middle of long paths.Using general path expressions we can, e.g., obtain the name of restaurants with zipcode92310 in the address or directly as a �eld of the restaurant. Note that in this query we alsoemploy several of the syntactic conveniences introduced in Section 4.6We could also use path expressions in the where clause to generate the from clause, but in practice wehave found that doing so is unnecessary. Note also that instead of generating the from clause only in caseswhere it is missing entirely, we could take a more general approach where we add missing components tothe from clause based on path expressions appearing elsewhere in the query. For simplicity, we have decidedagainst this more general approach. 20
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select Guide.restaurant.namewhere Guide.restaurant(.address)?.zipcode = 92310We �rst consider the exact syntax for specifying general path expressions, then we turn towildcards. The last two subsections deal with the use of path and object variables withingeneral path expressions.It is important to notte that while simple path expressions can always be translated toOQL, general path expressions cannot.5.1 Regular expressions for pathsA general path expression (gpe), like a simple path expression, starts with an object name ora variable. General path expressions extend simple path expressions by allowing the objectname or variable to be followed by one or more gpe components, rather than just a sequenceof labels as in simple path expressions. The syntax of a gpe component is given by:1. If l is a label, then :l is a gpe component.2. If X is an object variable, then :unquote(X) is a gpe component.3. If s1 and s2 are gpe components, then the following are also gpe components:s1s2 s1js2 (s1) (s1)? (s1) + (s1)�The unquote(X) function in case 2 takes the value of an object variable X (which must be co-ercible to a string) and uses it as a label in the path expression. So, for instance, ifX containsthe string \restaurant", then Guide.unquote(X) can be used instead of Guide.restaurant.In case 3, the symbol j is used for disjunction, ? means 0 or 1 occurrences, + means 1 ormore, and � means 0 or more.The only di�culty with our use of regular expressions here is that because of the Kleeneclosure (�), a general path expression may match an in�nite number of data paths if thedata is cyclic. Now, if we only care about the objects at the extremities of the paths, thereare a �nite number of them. However, if we also care about the paths themselves (e.g.,because of the path variables considered further on), the in�nite number of paths becomesan issue. In Lorel, we choose to avoid dealing with in�nite sets of paths by deciding thata data path is not allowed to cross the same object twice when matching a gpe componentterminating with a � or + in a general path expression. This acyclicity condition may appeararti�cial but it seems general enough for the applications we have considered so far, and itis easy to implement using a cycle detection mechanism. An alternative method would beto compute a �nite representation of the in�nite set of data paths matching a given pathexpression, which is possible because of the regularity of this set [Cou83]. However, thisapproach would seriously complicate the implementation.5.2 WildcardsThe regular expressions speci�ed above already allow some 
exibility in querying. However,when querying semistructured data, one often does not know all of the labels of the objects ortheir relative orderings precisely. It is therefore also useful to have a concept of \wildcards."21
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The �rst wildcard is \%," which matches 0 or more characters in a label. One can useany combination of letters, digits, or % in place of a label (i.e., in :l) in the de�nition ofa gpe component. For example, suppose we know that restaurants have a label \zip" or\zipcode," and some other label that contains a description pertaining to price. We canexpress the query \Find the names of cheap restaurants with zip(code) 92310" as follows:7select Guide.restaurant.namewhere Guide.restaurant.zip% = 92310 andGuide.restaurant.% = "cheap"The second wildcard is \#". The # symbol in a path expression, .#, is shorthand forthe expression \(.%)�", which is useful since it matches any data path of length 0 or more.In practice we �nd that # is used very, very frequently in queries.5.3 Path variablesAnother important feature of general path expressions is the ability to attach variables todata paths using path variables. The value of a path variable is a data path in the OEMgraph, i.e., a list of objects and labels. As such, the value of a path variable cannot beoutput in the query result. However, using path variables one can test data paths forequality, and a function, namely path-of, turns a data path into a single string containingthe labels in the data path separated by dots.The path-of function allows one to ask queries to \discover" the structure of the data.For instance, one could ask:select distinct path-of(P)from Guide.#@P.zipcode(where P is a path variable) to obtain the set of paths in the database that lead to zipcode.One would obtain:restaurantrestaurant.addressrestaurant.nearbyrestaurant.nearby.addressPerhaps the most practical use of path variables is to obtain the names of labels. Supposethat we want to obtain all labels leading to objects containing the string \cheap." We usethe query:select distinct path-of(L)from Guide.#.%@L Xwhere X = "cheap"This query will return label L if there is a path from Guide to some object X with value\cheap" and �nal label L. Here, L is a path variable for a path of length one, so it can be7For even more 
exibility, this query could use one of Lorel's built-in string matching predicates such aslike or grep in place of =. 22
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thought of as a label variable. Note that \Guide.#@L X" would instead bind L to the entirepath of labels originating from Guide.One last use of path variables that we will consider is as \path distinguishers," to forceidentical path expressions to match distinct paths in the OEM graph, as in the followingquery:select Rfrom Guide.restaurant Rwhere R(.#.nearby)@P = R(.#.nearby)@Qand P <> QThis query returns all restaurants R that have two distinct paths to the same nearbyrestaurant.5.4 More on object variablesExcept in the sample general path expressions at the beginning of this section, so far objectvariables have always appeared at the end of a path expression. We now show how objectvariables can be introduced in the middle of a path expression, a simple feature providedprimarily for syntactic convenience. The query:select Nfrom Guide.restaurant{R}.name Nwhere R.category = "gourmet"is equivalent to:select Nfrom Guide.restaurant R, R.name Nwhere R.category = "gourmet"Using object variables within path expressions is an alternative way of distinguishingbetween two path expressions that would otherwise be syntactically identical and thus beassigned the same variable. For example, the following query �nds all restaurants withaddresses in both Palo Alto and Menlo Park:select Nfrom Guide.restaurant{R}.name Nwhere R.address{A1}.city = "Palo Alto" andR.address{A2}.city = "Menlo Park"Without A1 and A2, a single existential variable would be used for address, which wouldalways result in an empty query result (assuming a single address always has a single city).In summary, then, a general path expression is a sequence Z:q1: : : : qn, where q1; : : : ; qnare quali�ed gpe components and Z is an object name or a variable denoting an object. Aquali�ed gpe component is an expression of the form:gpe component [ @P ] [fY g]23
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where P is an optional path variable and Y is an optional object variable. We restrict theuse of path and object variables so that path variables are not allowed to appear in pathexpressions in the select clause, and the same path or object variable may not be de�nedin more than one path expression in a query.6 Constructing ResultsA select-from-where query in Lorel has the same semantics as a select-from-wherequery in SQL or OQL: it results in a bag (multiset), or in a set if the keyword distinct isused. In Lorel, the result is always a collection of OEM objects, and duplicate eliminationis by oid. For a \top-level" query (i.e., a query that is not a nested subquery), or a queryused at the top level in an assignment (see Section 7), the �nal collection is packaged intoa single OEM object. We now explain how results are constructed in more detail.As in SQL and OQL, for each assignment of the variables in the from clause that passesthe condition of the where clause, a value is generated according to the expressions in theselect clause. Each of these values is then coerced into an OEM object. The coercion isexplained in detail below. The coercion may result in the creation of new objects and edgesin the OEM graph. Thus, the query result may refer to original database objects as well asto new objects created by the coercion.As mentioned above, the result of a top-level query is a single OEM object that isgenerated to hold the query result. The default name answer identi�es this object, andedges link it to elements of the answer. For instance, the query:select Xfrom Guide.restaurant Xwould generate the following answer object:answer &155restaurant &19restaurant &35restaurant &77Observe that only &155 is a new object. The result of this query can be reused in laterqueries, although renaming is necessary (Section 7.1) so that answer is not overwritten. Wediscuss below how the label restaurant is chosen for the edges leading to the elements of theanswer.Each value in the result of the select clause is coerced to an OEM object according tothe to oem coercion function speci�ed in Table 4. Let us examine each line in Table 4. As inthe previous example, the function to oem does nothing to an OEM object. From an atomicvalue, it creates a new OEM object of the appropriate type and value using the functionnew oem. We will return to this function when dealing with updates in Section 7. Theinteresting cases are: (3) when each value returned by the select clause is a collection, inwhich case the function creates a new complex object that holds the collection with defaultlabels (discussed below) leading to the subobjects, and (4) when the select clause returnsstruct values, in which case the function creates a complex object and uses the attributes of24
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Case Result of Select Expression Coercion Function1 OEM object o no coercion needed2 atomic value v new oem(type,v)where type is the type of v3 collection V new oem(complex,struct(default: fto oem(v) j v 2 Vg))4 struct(a1 : v1,..., an : vn) new oem(complex,struct(a1 : w1,..., an : wn)) wherewi = f to oem(v) j v 2 vi g if vi is a collectionwi = f to oem(vi) g otherwiseTable 4: Function to oem coerces values to a single OEM objectthe struct as labels leading to the subobjects. Because a select clause in Lorel containingmore than one expression is interpreted as an implicit struct construction, case (4) arisesfrequently.Note that the coercion also applies to the result of nested subqueries. For example, ifa query Q contains a nested subquery Q0 in its select clause, the result of Q0 is coercedto a set of OEM objects before coercing the result of Q. Observe also that this coercioncan be extended to transform an arbitrary (portion of an) ODMG database to our ObjectExchange Model. An OEM object is created for each ODMG object, and the values of theobjects are coerced according to the rules in Table 4.As an example, the following query illustrates the use of multiple expressions in a selectclause. The query returns the names and addresses for each restaurant in Guide.select X.name, X.addressfrom Guide.restaurant XThe result of the query on our sample database is:answer &100restaurant &101name &13 "Chef Chu"address &14 ...restaurant &102name &17 "Saigon"address &23 "Mountain View"address &25 "Menlo Park"restaurant &103name &80 "McDonald's"Lorel determines the appropriate label for each element of the result at run-time. Thereare three cases: (1) If the object already exists in the database, then the last label on thedata path that was matched by the query (causing the object to be selected by the query)is chosen. (2) If a new object is based on an existing object, e.g., by projecting some of itssubobjects (as in the new object &101 above), then the label leading to the existing objectis chosen. (3) If neither (1) nor (2) holds, then we use the label \default" for the new object.25



www.manaraa.com

7 UpdatesWe have now seen the novel features of Lorel for querying semistructured data. This sectionintroduces Lorel's declarative update language. Using the update language, it is possibleto create and delete database names (Section 7.1), create a new atomic or complex object(Section 7.2), modify the value of an existing atomic or complex object (Section 7.3), andbulk load an OEM database (Section 7.4). As mentioned earlier, deletion occurs implicitlywhen an object becomes unreachable, so there is no explicit deletion operation.7.1 Assigning names to objectsNames are entry points into the database and are created using the name statement:name <name> := <expression>Names also may be created while bulk loading the database, as discussed in Section 7.4below. The expression returns a single object that is assigned to the name. Coercion isperformed to coerce the expression into a single OEM object if necessary, using the functionto oem speci�ed earlier in Table 4. Expressions may be queries, new object creations, orthe null keyword. If the name does not yet exist, this statement creates a new name called<name>. If the name already exists then it is reassigned to the returned object.For example, the following statement creates an entry point to the Saigon restaurant.8name myFavorite := element( select Guide.Restaurantwhere Guide.Restaurant.name = "Saigon" )The same name may later be reassigned as follows:name myFavorite := element( select Guide.Restaurantwhere Guide.Restaurant.name = "Chef Chu" )Names are deleted by assigning them to null:name myFavorite := nullWe note again that deletion is by unreachability (garbage collection), so an assignment tonull may result in the deletion of some objects.7.2 Object creationFor object creation, we use the function new oem:new oem(val-type; value)! objectThis function creates a single object with the speci�ed type and value. (Objects also maybe created during bulk loading, of course.) The possible value types for an object are theatomic types, e.g., integer, real, string, gif, etc., and the complex object type complex.Complex object values are speci�ed as struct's, where each �eld describes a label and a8Element is an OQL keyword that extracts and returns the single member of a singleton set.26
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set of OEM objects for that label. Lorel also includes a second function, load oem, which isused for creating \binary large objects" such as gif images and audio. Load oem is identicalto new oem, except that the name of a �le containing the value is given in place of the valueitself.Here are two examples of new oem:new_oem( int , 5 )new_oem( complex , struct(a:{new_oem(int,5)}, b:{X,Y}) )The �rst example constructs an integer OEM object with value 5. The second examplecreates a new complex object, say o, puts an a edge between o and a new object of value 5,and puts b edges between o and the objects named X and Y .We allow shorthand notation in the creation of objects when the omitted information isredundant:1. When the value type can be deduced from the value it may be omitted. For example,5 is inferred to be an integer.2. Values are coerced to objects using the function to oem in Table 4 if needed.3. The struct constructor may be omitted.Thus, the two examples above may be written more compactly as:new_oem( 5 )new_oem( a:5, b:{X,Y} )Note in particular that the operator new oem itself may be omitted and \5" understood as\new oem(int, 5)" after coercion.7.3 Updates to objectsThe values of objects may be modi�ed using the update statement. We �rst considerupdating single named (complex or atomic) objects and then look at updating many objectssimultaneously with one construct.Suppose that Price is a named atomic (integer) object. Its value may be modi�ed usingthe statement:update Price := 7This statement changes the value inside the object identi�ed by Price. After the statement,Price continues to identify the same object. By contrast,name Price := 7would create a new object containing the value 7 and then assign Price to it.Updates also may increment (add to) or decrement (delete from) the value. The followingexample adds 1 to the Price value:update Price += 1 27
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Similarly, to decrement a value we use -=.Complex objects also may be modi�ed by changing, adding to, or deleting from thesubobjects with a given label. For instance, the following update indicates that a newbranch of my favorite restaurant has opened in Sunnyvale.update MyFavorite.address += "Sunnyvale"The general form of the update statement for complex objects is:update <object-selector>.<label> (+/-/:)= <expression>and the semantics for updating complex objects is de�ned as follows. The <object-selector>determines an object o to be updated. It is usually a database name, but could also bethe unique object result of a query (e.g., element(...)). The <expression> identi�es aset O of objects. If the operator is +=, then new edges are created from o to each objectin O and given the label <label>. If the operator is -=, then existing edges with the label<label> from o to objects in O are removed. If the operator is :=, all edges from o withlabel <label> are removed and new edges with label <label> are introduced between o andeach object in O.Observe that we change the type of an object simply by assigning it a value of a di�erenttype, an important convenience feature for semistructured data.Now let us consider a way of modifying many objects simultaneously. We can do sousing a statement of the form:update P := <expression>from <from-clause>where <where-clause>where P is a variable bound in the from clause. The from and where clauses are the sameas in the Lorel select statement. The binding of the variables in the from and whereclauses is done before evaluating the update, and the variables may be used in a queryin the <expression>. Logically, the update \P := <expression>" is performed for eachbinding in the from clause that satis�es the where clause. We can also modify the valuesof multiple objects using += and -= with this construct.For example, the following query adds the restaurant's city as a direct subobject of therestaurant object if the city is Palo Alto or Menlo Park:update X.city += Zfrom Guide.restaurant{X}.address.city Zwhere Z = "Palo Alto" or Z = "Menlo Park"Finally, we observe that it takes two operations to update a label. For example, thefollowing two statements transform all the restaurant labels to eatery labels.update Guide.eatery := select Guide.restaurantupdate Guide.restaurant := {} 28
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7.4 Bulk loadingLorel provides a \load <filename>" statement, which reads the load �le <filename> andcreates the objects described in it. In the load �le, objects may be of any type. If the objectis atomic, then both its type and value are given together. If the object is complex, then itis described by its subobjects, which may include other new objects created by the load �leand named objects that existed prior to the load. Cyclic data is supported. A (persistent)name may be assigned to any new object as part of the load. Lorel's load statement canalso add additional subobjects to existing named objects. The load �le syntax and furtherdetails are given in [HW96].8 Implementation on Top of an OODBIn this section, we brie
y consider how Lorel can be implemented on top of a standardODMG database. We �rst reconsider the type OEM de�ned in Section 2. Since we havealready discussed in Sections 3{6 the primary aspects of translating Lorel to OQL extendedwith heterogeneous objects, we only touch on a few additional issues here, including (verybrie
y) the issue of physical database design.OEM objects can be implemented using the following ODMG Object De�nition Lan-guage (ODL) type de�nition:interface OEM;interface OEMcomplex: OEM{ attribute set(struct(label:string,values:set(OEM))) complex-value; };interface OEMstring: OEM{ attribute string atomic-value; }interface OEMint: OEM{ attribute int atomic-value; }...interface OEMnil: OEM;Changes from the type de�nition in Section 2 are due to minor restrictions of ODL: (i) theinternal structure of an object is a tuple and cannot simply be an atomic value, which forcesus to introduce the attributes \atomic-value," and (ii) we need to represent a complex OEMobject as a set of pairs (label, set of values).The type extent for the type OEM is empty. Certain methods apply to all OEM objectsand are therefore de�ned in type OEM, although they only have subtype instances. Theseare methods to obtain the value(s) of an OEM object, to compare OEM objects, to updatethem, etc. For example, the following method can be used to extract subobjects fromcomplex OEM objects:set(OEM) field(in string label);If X is a complex OEM object, the expression X:field(\address") returns the set of addresssubobjects of X . If X is not complex, or if it has no address subobjects, then the emptyset is returned.The comparators also are de�ned as methods. For instance, the following methods inthe class OEM are used for comparing OEM objects:29
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boolean value-equal(in OEM val)boolean equal-to-int(in int val)boolean equal-to-string(in string val)...Note for instance that method equal-to-int is de�ned as false in class OEM but rede�nedin classOEMint as self.atomic-value = val and as self.atomic-value=int-to-real(val)in class OEMreal.Updates also are implemented using methods. We do not consider updates that modifythe type of objects since such updates are not permitted in ODMG. Object creation simplyuses the new function with the type (OEMreal, OEMint, etc.) as the �rst argument. Foratomic objects, the new function also takes the initial value as argument, and no otherargument for complex OEM objects (which are initialized to empty).Other update methods are the following:boolean assign-real(in real new-value)boolean assign-int(in new-value)...boolean add-edges(label:string,added-set:set(OEM))boolean method remove-edges(label:string,removed-set:set(OEM))All of these methods are de�ned in the class OEM. When one of the last two methods isapplied to an object that is not complex, it has no e�ect on the database and simply returnsfalse. Since we are not considering updates to an object's type, we say that an improperupdate (e.g., assigning a real to a complex object) also has no e�ect on the database andreturns false. So, in particular, assign-real is rede�ned only in class real (with obviousmeaning) and in classes integer and string (with the new value appropriately coercedbefore performing the update).We conclude this section by noting that the performance of such an implementationdepends heavily on two issues: clustering and indexes. For clustering, the system should atleast be capable of clustering an object and its subobjects together, recursively. A secondimportant issue is the use of indexes for managing complex objects with many subobjects.For example, an index can be used for speeding up the evaluation of the method �elddescribed above.9 The Lore SystemWe have implemented Lorel as the query language for our prototype database managementsystem Lore. Because we are interested in exploring the many facets of managing semistruc-tured data, Lore has been built entirely from scratch. As we have shown in the previoussection, Lorel could instead be implemented on top of a conventional object-oriented DBMS.Here we discuss the architecture and query engine that comprise the Lore system. A com-prehensive discussion of the Lore system is beyond the scope of this paper.The basic architecture of Lore is depicted in Figure 4. While much of this section willfocus on the query processor, we also brie
y describe the textual interface, the HTMLGraphical User Interface, and the object manager.30
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Figure 4: Lore architectureThe current Lore system has two user interfaces. There is a simple textual interface,primarily used by the developers for debugging. The graphical interface, the primary inter-face for end users, provides powerful tools for browsing query results, a data guide featurefor seeing the structure of the data and formulating simple queries \by example," a way ofsaving frequently asked queries, and mechanisms for viewing the more exotic atomic typessuch as video, audio, and java.The object manager component, which appears just above the persistent storage com-ponent in the Lore architecture, functions as the interface between the query processorand the low-level �le constructs. It supports basic primitives such as fetching an object,comparing two objects, performing simple coercion, and iterating over the subobjects ofa complex object. In addition, some performance features, such as a cache of frequentlyaccessed objects, are implemented in this component.The query processor, which resides between the user interface and the object manager,follows the following basic steps when answering a query:1. the query is parsed,2. the parse tree is preprocessed to translate it into an OQL-like query,3. a logical query plan is constructed,4. query optimization occurs,5. the optimized logical plan is translated into a physical query plan, and6. the physical plan is executed.As an example, consider the following simple Lorel query:31
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Figure 5: Sample Lore query planselect Guide.restaurant.addresswhere Guide.restaurant.category = "gourmet"The query is parsed, then translated into an OQL-like query using the techniques describedthroughout this paper. The OQL-like query is:select Yfrom Guide.restaurant X, X.address Ywhere exists Z in X.category : Z = "gourmet"Then, a logical query plan is generated. A plan for our example query is shown in Figure 5.Although Lorel is based on an object-oriented data model, our query execution strategy isbased primarily on familiar relational operators. The relational \tuples" we operate on areObject Assignments, or OAs. We use a recursive iterator approach in query processing, asdescribed in, e.g., [Gra93]. We now explain how OAs are constructed and operated uponby the nodes in our logical plan.An OA is a simple data structure containing slots corresponding to range variables in thequery, along with some additional slots depending on the form of the query. For example,an OA structure for the example query is:OA0 OA1 OA2 OA3 OA4Guide OA0.restaurant OA1.address OA1.category AggrIntuitively, each slot within an OA holds the oid of a node on a data path currently beingconsidered by the query engine. For example, if OA1 has the oid for a restaurant \Saigon,"then OA2 and OA3 can hold the oid's for one of Saigon's address subobjects and one of itscategory subobjects, respectively. Note that at a given point during query processing, it is32
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not necessarily the case that all slots of the current OA contain a valid oid. Indeed, thefunction of query execution is to build complete OAs.We now brie
y explain each of the operators in Figure 5. The Scan operator, which isused in several leaf nodes, is similar in functionality to a relational scan. Here, however,instead of scanning over all tuples based on the name of a relation, our scan returns alloid's that are subobjects of a given oid with respect to a given gpe component. The Scanoperator is de�ned as:Scan (StartingOASlot, gpe_component, TargetOASlot)Scan starts the search from the oid stored in StartingOASlot, and at each iteration placesinto the TargetOASlot the oid of the next subobject that satis�es the gpe component. Thegpe component is a string describing which labels Scan should match, and is similar tothe syntax for gpe components described in Section 5. Scan is called repeatedly for a givenStartingOASlot until the TargetOASlot no longer holds a valid oid. For example, considerthe following Scan that appears in our example plan:Scan (OA1, "address", OA2)This scan iterator will place into slot OA2, one at a time, all address subobjects of the oidin slot OA1. Note the special form for the lower left Scan:Scan (Root, "Guide", OA0).Instead of using an OA slot as the �rst argument, the value Root, which is a system-knownoid from which all names can be reached, is used.Each child of a Join node �lls information into the current OA. Like a relational nested-loop join operator, one function of the Join node is to coordinate its left and right children.For each partially completed OA that the left child returns, the right child is called exhaus-tively until no more new OAs are possible. Then the left child is instructed to retrieve itsnext (partial) OA. The iteration continues until the left side produces no more OAs.The Select and Project nodes are nearly identical to the corresponding relational op-erators. The one di�erence is that while relational select and project deal with relationand attribute names, in Lore query plans these operators implicitly operate upon the ob-jects identi�ed by the oid's within the current OA. Thus, the Project operator is used tolimit which subobjects should be returned by specifying a set of OA slots, while the Selectoperator applies predicates to the objects identi�ed in the OA slots.The Aggregation node (shown in Figure 5 as the right child of the �rst Join node) is usedin a somewhat novel way. Besides functioning as the standard grouping and aggregationoperation, it also serves as an evaluation mechanism for quanti�ed variables. The aggrega-tion node groups the OAs received from its child based on the speci�ed slot (OA1 in theexample), then applies the aggregation operator, in this case exists. It adds to the speci�edslot in the current OA (OA4 in the example) the result of the aggregation, which here is thevalue true if the existential quanti�cation is satis�ed and false otherwise. Filtering of OAswhose quanti�cation is true occurs in the �nal Select node. Note that the exists operator\short circuits" when it �nds the �rst satisfying OA, while other aggregation operators needto look at all OAs in each group. 33
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There are some fairly obvious optimizations that can be done to the logical plan inFigure 5, such as pushing the top Select down the right subtree and moving selectionconditions into scans. In the current Lore query processor, only a few query optimizationtechniques are implemented and the physical query plan is very similar to the logical plan.Thus, we essentially evaluate the plan shown in Figure 5 directly. Implementation of queryoptimization and \real" physical plans is under design.The Lore system includes several novel features in addition to the Lorel language. Ofparticular interest are the data guide and external objects:� The data guide for a given OEM database is an OEM object that encapsulates thestructure of the graph in terms of edge labels, without repeating identical paths[NUWC96]. Essentially, the data guide provides a structural summary of the currentdatabase, which in a semistructured environment can be extremely useful in under-standing how the data is structured and formulating queries. In our graphical userinterface, the data guide also can be used to form simple queries in a \by example"style.� External objects allow Lore to dynamically fetch and integrate information stored inexternal data sources during query processing, and cache the information for later use.Any object in Lore may be a placeholder for an external object, allowing Lore to serveboth as a storage repository for semistructured data and a query-driven integrationengine.9.1 System statusAs of summer 1996 the query processor and the rest of the Lore system is functional androbust for a subset of the Lorel language. Language features whose implementation isstill underway include path variables, external predicates and functions, complex selectclauses, full aggregation, and the declarative update language. In addition, the completefunctionality of general path expressions is not yet implemented, although a substantial andvery useful subset is. While Lore currently maintains indexing structures, the query plansare not \intelligent" enough to make use of them yet. As noted above, currently little queryoptimization takes place, so there is a considerable amount of work to do in this area ofquery processing. Finally, although Lore was designed initially as a \lightweight" DBMS tobe used primarily in single-user or read-only mode, as we �nd more and more uses for Lorewe are feeling the need to add \heavyweight" features such as transactions, concurrencycontrol, and recovery.A Lore server with a number of sample databases is available for public use. Users cansubmit queries in the subset of the Lorel query language currently frozen and can experimentwith features such as result browsing, data guides, and external objects. Please visit us athttp://www-db.stanford.edu/lore.AcknowledgementsMany thanks to all the members of the Lore research project, past and present, includingRoy Goldman, Kevin Haas, Qingshan Luo, Svetlozar Nestorov, Anand Rajaraman, Hugo34
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A SyntaxThe complete Lorel syntax appears in Figures 6 and 7. Note that not all the constructs inthe language have been discussed in the body of the paper, since the paper focuses on theinnovative features in Lorel.In the grammar \fg*" means 0 or more repetitions, \fg+" means 1 or more repetitions,and \[ ]" means optional. The exception is Rule 25, where [ ] is used to delimit a characterclass and the following + means that a sequence of one or more characters can be drawnfrom the class.Rule 19 has a higher precedence than Rule 20, meaning that a path expression consistingof multiple label expressions separated by dots is parsed as multiple quali�ed paths, ratherthan a single quali�ed path consisting of multiple paths.Note that some \factoring" of the grammar has occurred to facilitate parsing, e.g., theintroduction of safe set query.
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(1) query ::= set queryj atomic queryj value query(2) set query ::= sfw queryj path exprj set query intersect set queryj set query union set queryj set query except set queryj (set query)(3) atomic query ::= varj element(set query)(4) value query ::= *atomic queryj constantj pathof(path var)j external function name(query list)j (query) arith op (query)j � queryj abs(query)j aggr function(set query)(5) query list ::= queryj (query)f, (query)g*(6) sfw query ::= select [ distinct ] select expr f, select expr g*[ from from expr f, from expr g* ][ where predicate ](7) select expr ::= query [ as select identi�er ]j select identi�er : queryj new oem(select expr f, select expr g*) [ as select identi�er ](8) from expr ::= path expr [ [ as ] var ]j var in path expr(9) predicate ::= not predicatej predicate and predicatej predicate or predicatej query comp op queryj safe set queryj exists(set query)j boolean constantj exists var in safe set query : predicatej for all var in safe set query : predicatej safe query in safe set queryj safe query comp op quanti�er safe set queryj external predicate name(query list)j (predicate)Figure 6: Lorel syntax39
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(10) safe set query ::= (set query)j path expr(11) safe query ::= (query)j constantj variablej path exprj *atomic query(12) select identi�er ::= identi�erj unquote(path var)(13) arith op ::= + j � j � j = j mod(14) comp op ::= < j <= j = j <> j >= j >j like j grep j soundex(15) aggr function ::= min j max j count j sum j avg(16) quantifer ::= some j any j all(17) constant ::= nilj integer literalj real literalj quoted string literalj boolean constant(18) boolean constant ::= true j false(19) path expr ::= var fquali�ed gpe componentg+(20) quali�ed gpe component ::= gpe component [ @path var ] [ fvarg ](21) path var ::= identi�er(22) var ::= identi�er(23) gpe component ::= : label exprj gpe component | gpe componentj gpe component gpe componentj (gpe component) [ regexp op ](24) regexp op ::= * j + j ?(25) label expr ::= # j [A-Za-z0-9% ]+j unquote(path var)Figure 7: Lorel syntax continued40


